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Abstract—In this study, we have compared the computa-
tional performance of two methods implemented to solve the
Schrödinger equation for intramolecular torsional motions. The
first approach is the Fourier grid Hamiltonian (FGH) oper-
ator method, which is based on fragmentation of the total
torsional Hamiltonian into kinetic energy part, which is diagonal
in momentum representation, and the potential energy part,
diagonal in coordinate representation. The second approach is
the standard diagonalization technique, based on variational
principle of quantum mechanics. Torsional energy eigenvalues
are further used to compute the torsional correlation times in
the framework of BPP (Bloembergen-Purcell-Pound) approach.
The results show that diagonalization technique performs much
faster than the FGH algorithm. Besides that, the convergence of
eigenvalues with the number of basis functions appears to be
achieved faster with Hamiltonian diagonalization

Keywords—torsional Shcödinger equation, Fourier Grid Hamil-
tonian method, diagonalization technique, computational perfor-
mance

I. INTRODUCTION

Solution of the torsional Schrödinger equation is a problem
that arises in many areas of contemporary science and technol-
ogy, and is therefore a rather relevant computational task. If
one wants to treat rigorously (i.e. quantum-mechanically) the
intramolecular hindered rotations of particular atomic groups,
it is necessary to go beyond the classical approximation in
treating such motions. For example, in case of molecular
systems which are potential candidates for molecular switches
or transistors, one of the possible mechanisms that underlay the
switching behavior is the conformational transition between
two (or in principle, even more) possible conformations in the
considered molecule. The potential energy function V (ϕ) for
this motion is often conveniently represented as Fourier series
expansion, which allows one to easily account for the inherent
symmetry of intramolecular motion:

V (ϕ) = V0 +

∞∑
n=1

[Vn cos(nϕ) + V ′n sin(nϕ)] (1)

The corresponding torsional Hamiltonian is:

Ĥtorsion = − h̄2

2Iϕ

∂2

∂ϕ2
+ V (ϕ) (2)

In the last equation, ϕ is the torsional variable (angle),
I is the moment of inertia corresponding to the motion
considered, while (h̄ being Planck’s constant). In principle, the
torsional transitions may occur as a result of classical ”over the
barrier” flip, by intrawell transitions (between different states
within the same well of the potential), and due to tunneling
between adjacent wells. Accounting for all these types of
torsional transitions is essential if one wants to describe the
actual realization and functioning of a molecular device under
realistic conditions. To achieve this aim, however, one has to
solve the torsional Schrödinger equation as a first step. In the
present study, we consider a solution of such equation for a
realistic molecular system.

The goal of our research is to find the computational
performance of the Fourier Grid Hamiltonian method and
standard diagonalization technique of the Hamiltonian matrix
to solve the Schrödinger equation for intramolecular torsional
motions. The Fourier Grid Hamiltonian method is diagonal in
momentum representation, and the potential energy part, diag-
onal in coordinate representation. The transformation between
the two representations is achieved via Fourier transformation
algorithm using a suitably chosen grid of points.

In a case of the standard diagonalization technique, the
Hamiltonian operator is written in matrix representation within
a suitably chosen basis set, consisting of the free rotor wave
functions. The Hamiltonian matrix is further diagonalized,
giving energy eigenvalues and eigenfunctions.

When applying the Fourier Grid Hamiltonian operator
method, the dependence of computational performance and
the convergence of obtained torsional energy levels on the
number of grid points used are analyzed, while when applying
the standard diagonalization technique, the dependence of
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computational effectiveness and the convergence of obtained
torsional energy levels on the number of basis functions is
studied. Special attention was paid to the high-energy bound
levels (close to the torsional barrier) and their convergence in
both cases.

The paper is organized as follows. The related work is
given in Section 2. The methods for solving the torsional
Schrödinger equation are described in Section 3. Section 4
presents the experiments and results of the experiments for
measuring the computational effectiveness of the applied meth-
ods. The conclusion and future work are exposed in Section
5.

II. RELATED WORK

Solution of the torsional Schrödinger equation has been
a research subject for several authors. Turovtsev et al. [1]
find the characteristics of the internal rotation based on the
solution of the torsion Schrödinger equation. They solved the
one-dimensional torsional Schrödinger equation with a general
periodic potential and found the relations for the calculation of
eigenvalues and eigenfunctions of the Hamiltonian of internal
rotational motion in molecules in the basis of plane waves. In
[2], the authors present a numerical method for solving the
approximate Schrödinger equation (SE) for a single internal
motion. They pay special attention to computer programs for
calculations and their applications to torsional studies in areas
of spectroscopy, thermodynamics, and reaction rates.

A comparison of the methods for solving the vibrational
Schrödinger equation is given in [3]. The authors apply three
numerical methods to compute the anharmonic OH stretching
vibrational frequencies of the free and aqueous hydroxide ion
on the basis of one-dimensional vibrational potential energies:
simple Hamiltonian matrix diagonalization technique, based
on representation of the vibrational potential in Simons-Parr-
Finlan (SPF) coordinates, Numerov algorithm and Fourier grid
Hamiltonian method (FGH). According to their research, the
diagonalization technique performs remarkably well in a very
wide range of frequencies and frequency shifts (up to 300
cm1) and FGH method, showed a very good performance,
exhibits more significant (and nonuniform) discrepancies with
the Numerov algorithm, even for rather modest frequency
shifts.

III. METHODS FOR SOLVING THE TORSIONAL
SCHRÖDINGER EQUATION

A. Fourier Grid Hamiltonian Method

The Fourier grid Hamiltonian (FGH) method is a spe-
cial case of a discrete variable representation method (DVR)
described in [4] [5]. The FGH method generates the wave-
functions of the Hamiltionian operator as amplitudes of the
wave function on the grid points. It is simple because the
wavefucntions are not given as a basis functions or as a
linear combination [6]. Discretization is achieved when the
continuous range of the coordinates values x is replaced by a
grid of discrete values xi. The uniform grid xi is defined as:

xi = i∆x (3)

where ∆x is the uniform spacing between the grid points.

The state function (property of a system which depends
only on the current state of the system) |ψ〉 can be given as
a vector on a discretized grid of points in coordinate space
represented as:

|ψ〉 = ψx =
∑
i

|xi〉 ·∆x · ψ(xi) =
∑
|xi〉 ·∆x · ψi

x (4)

where |xi〉 are basis functions or in momentum space
represented as:

|ψ〉 = ψk =
∑
i

|ki〉 ·∆k · ψ(ki) =
∑
|ki〉 ·∆k · ψi

k (5)

where ∆k is the reciprocal grid size in momentum space
and it is defined as:

∆k =
2Π

N∆x
(6)

and N∆x is the total length of the coordinate space
covered by the grid. The grid points are evenly distributed
about k = 0 which is the central point in the momentum space
[3] [6].

The transformation from one to other representation is
performed by using the Fourier transform technique (FTT) that
decomposes a function of time (signal) into the frequencies that
it is made of [7]. Transformation between the two representa-
tions can be written as:

ψk = U ∗ ψx (7)

where U is an unitary matrix.

We also have to define a column vector matrix φn where
each element is 0 except the unity element in the n-th row:

φn =



0
0
...
1
...
0
0


− n-th row (8)

The nth column of the Hamiltionan matrix can be repre-
sented as follows by implementing a forward and reverse FFT:

Hin = [(U−1TU + V )φn]i (9)

where T and V are the diagonal kinetic energy and potential
energy [V (xi)] matrices. The complete Hamiltionian matrix H
can be generated by repeating this process for all possible N
vectors φn.
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B. Standard Diagonalization Technique Method

Schrödinger equation can be solved by using the standard
matrix diagonalization technique. In this case, the wavefunc-
tion is represented as a finite set of basis functions. The eigen-
functions and eigenvalues are found from the diagonalization
of the Hamiltonian matrix [8].

The Schrödinger equation can be written in the following
form [9]:

Ĥψ(q) = Eψ(q) (10)

where Ĥ is the Hamiltonian operator, ψ(q) are eigenfunctions
and E are eigenvalues of Ĥ . This equation is solved by
finding the eigenvalues and eigenfunctions of the Hamiltonian
operator.

If we split the function ψ(q) in basis functions, we can
write the ψ(q) as:

ψ(q) =
∑
n

anϕn(q) (11)

and if we replace the ψ(q) in the eq. 10:

Ĥ
∑
n

anϕn(q) = E
∑
n

anϕn(q) (12)

Hamiltonian operator is a linear operator and it can be
embedded in the sum:∑

n

an(Ĥϕn(q)) = E
∑
n

anϕn(q) (13)

If (13) is multiplied scalarly by ϕ∗m(q) and integrated by
q, then we get the following:∑

n

an

∫
ϕ∗m(q)Ĥϕn(q)dq =

∑
n

anE

∫
ϕ∗m(q)ϕn(q)dq

(14)∫
ϕ∗m(q)Ĥϕn(q)dq = Hmn (15)

∫
ϕ∗m(q)ϕn(q)dq = δmn (16)

If we substitute in (14), we have:∑
n

anHmn −
∑
n

anEδmn = 0 (17)

Equation (17) can be written in the following form:∑
n

an(Hmn − Eδmn) = 0 (18)

where Hmn is the matrix element of the Hamiltonian operator
Ĥ .

An homogeneous algebraic system of equations is defined
by (18). It has a nontrivial solution if its determinant is equal
to zero:

|Hmn − Eδmn| = 0 (19)

Equation (19) is a polynomial whose roots are the possible
values of E. Thus, the eigenvalues of Ĥ are roots of (19).
The eigenfunction, which corresponds to a given eigenvalue is
determined such that the given eigenvalues is inserted in (17).
Thus, the system of coefficients an is determined ant that helps
to find the corresponding eigenfunction.

The elements Hmn determined by (15) are called matrix
elements of the Hamiltonian operator Ĥ in the basis functions
ϕn(q) and they constitute the matrix [H]:

[H] =


H11 H12 . . . H1n . . .
H21 H22 . . . H2n . . .
. . . . . . . . . . . . . . .
Hn1 Hn2 . . . Hnn . . .
. . . . . . . . . . . . . . .

 (20)

From (12), it follows that the functions ψ(q) have a corre-
sponding column vector:

ψ(q)→


a1
a2
. . .
an
. . .

 (21)

If the matrix [H] is diagonal, then its diagonal elements
determine the eigenvalues of the operator Ĥ .

IV. EXPERIMENTS AND RESULTS

A. Testing environment

The testing of these two different approaches for solving
the torsional Schrödinger equation was performed by using
the Fourier Grid Hamiltonian 1D Program (FGH1D) [10]
and Basis-set Expansion solver for 1-Dimensional Schrödinger
equation (BEx1D) [11].

The FGH1D program calculates the energy levels (eigen-
values) and wavefunctions (eigenvectors) for a given one-
dimensional potential. It solves the Shrödinger equation varia-
tionally by using the Fourier Grid Hamiltonian method which
is described in the subsection III-A. This method uses a basis
set of delta functions and it requires an even number of grid
points (basis functions). The accuracy increases with increas-
ing the number of grid points. The most computationally
intensive part is the matrix diagonaization. We used the option
cos(nx) potential which is useful for describing torsional
rotations. The range is set automatically to be 0 to 2p(p−1)/p
where p is the number of grid points, x is an angle in radians
and the moment of inertia (in our case 22.84588830778) is
expressed in amu * Å2 (Å=Ångströms, 1Å = 10−10 m, amu
= atomic mass unit.

The BEx1D program is a package of calculation tools for
finding eigenstates and partition functions of intramolecular
nuclear motions, for which harmonic oscillator approxima-
tion is inadequate. We used the bx1HRsol file which is
Schrödinger-equation eigen-problem solver for a intramolec-
ular one-dimensional hindered Rotation on a Fourier series
potential. The basis functions used by bx1HRsol are the free-
rotor eigen functions. We only had to change the number of
basis functions maxAbsQN which is the maximum absolute
J . For example, if maxAbsQN= 50, the program will use
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101 basis functions in total from J = −50 to +50. Another
parameter that we have specified is the rotational constant
(rotConst) which in our case was set to 0.738488849 cm−1.

Both programs were run under the Windows operating
system on a single node computer with Intel Core 2 Duo
processor with speed of 2.26 GHz.

B. Results

The computational performances of the used programs are
obtained by measuring the time required for the program
execution for a different number of basis functions (grid
points). The maximum number of basis functions when using
the BEx1D program is 3001 (maxAbsQN= 1500) and the
maximum number of grid points when using the FGH1D
program is 710. The execution times (in seconds) of the
programs are shown in the fig. 1. The x-axis denotes the
number of grid points or basis functions. The y-axis denotes
the execution time in seconds.

Fig. 1. Comparison of the execution times of BEx1D (up) and FGH1D
program (down)

The execution times of the BEx1D program, starting for
101 (maxAbsQN= 50) to 3001(maxAbsQN= 1500) basis
functions are shown in fig. 2.

The convergence with an error of 1% relative to the
converged one has been achieved with the FGH1D method

Fig. 2. Execution times of BEx1D program

for 102 grid points. In the case of diagonalization technique,
on the other hand, such convergence is achieved with 47 basis
functions.

V. CONCLUSION AND FUTURE WORK

In conclusion, we can summarize the results of the present
work as follows. Making an analogy between the number of
grid points used to discretize the operators in the FGH1D
methodology and the number of basis functions in diagonal-
ization technique, one can see from Fig. 1 and Fig. 2 that
the diagonalization technique performs much faster than the
FGH1D algorithm. Besides that, the convergence of eigenval-
ues with the number of basis functions appears to be achieved
faster with Hamiltonian diagonalization in the basis of free-
rotor wavefunctions than by discretization technique. Further
improvements of both techniques are certainly possible from a
purely computational viewpoint, either by implementing more
efficient large matrix diagonalization parallel algorithms and
more efficient Fourier transformation algorithms that allow
transition from coordinate to momentum basis in FGH tech-
nique.
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