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Abstract. A description of free objects in the class Psc of power-semi-

commutative ternary groupoids and a proper characterization of the

class of free objects in Psc by means of Psc-injective ternary groupoids

are obtained.

1. Introduction

Ternary algebraic operations were introduced in the 19th century by A.

Cayley. In 1928, W. Dörnte, under inspiration of Emmy Noether, intro-

duced the notion of an n-ary group. Later on, in 1932, D. H. Lehmer

introduced the notion of ternary algebraic system by investigating certa-

in algebraic systems called triplexes which turn out to be commutative

ternary groups ([19]). Ternary structures have many applications in differ-

ent branches, such as Lie algebra theory ([22]), matrix theory ([18]), diffe-

rential geometry, theoretical and mathematical physics ([17, 20]), etc. Many

generalizations of binary structures to higher n-ary contexts are considered

by many authors. Free n-ary algebraic structures (specially free ternary

algebraic structures) are investigated, for example, in [2, 9, 10, 14, 24].

Groupoids (i.e. algebras with one binary operation) with a power-proper-

ty, such as power-associativity and power-commutativity, are structures

that have a weak form of associativity ([12]) or commutativity ([6]). It

seams that power-associativity have been first studied by Albert in 1948

([1]), concerning rings. A groupoid is said to be power-associative (power-

commutative) if the subgroupoid generated by any of its elements is a sub-

semigroup (commutative subgroupoid). The concept of power-property can

be extended to n-ary groupoids ([11]) and specially to ternary groupoids.
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By a ternary groupoid we mean a nonempty set G with one ternary oper-

ation [ ] : G × G × G → G. For the notation and basic notions the reader

is referred to [16] and [23].

A ternary groupoid G = (G, [ ]) is said to be semicommutative ([3, 4,

15, 21]) if

(∀a, b, c ∈ G) [abc] = [cba].

The class Sc of all semicommutative ternary groupoids is a variety, defined

by the identity [x1x2x3] ≈ [x3x2x1].

Some properties of semicommutative ternary groups are considered in

[4]. Namely, a ternary group is medial if and only if it is semicommutative,

and a ternary group G is semicommutative if and only if there exists a ∈ G
such that [xay] = [yax], for all x, y ∈ G. Semicommutative n-monoids are

considered in [21].

Power-semicommutative ternary groupoids are ternary groupoids such

that every ternary subgroupoid generated by any of its elements is a semi-

commutative ternary subgroupoid.

For example, let G = {0, 1, 2} and let [ ] : G3 → G be a ternary operation

defined by:

[000] = [010] = [101] = [011] = [110] = 1, [111] = [001] = [100] = 0,

[xyz] = 2, if y = 2 or z = 2 and [2yz] = 1, for every y, z ∈ G.

Clearly, ternary subgroupoids of G generated by 0, 1 and 2, respectively,

are 〈 0 〉 = 〈 1 〉 = {0, 1} and 〈 2 〉 = {2} and they are semicommutative. So,

(G, [ ]) is a power-semicommutative ternary groupoid. It is not semicommu-

tative, since, for instance, [012] = 2 6= 1 = [210]. Also, it is not a ternary

semigroup, since, for instance, [[000]00] = [100] = 0 6= 1 = [010] = [0[000]0].

In this paper we consider free objects in the class of power-semicommuta-

tive ternary groupoids.

2. Preliminaries

We will briefly mention the construction of the absolutely free ternary

groupoid TX = (T, [ ]) over a nonempty set X, by using the construction of

the absolutely free vector valued groupoid ([13]), i.e. an (n,m)-groupoid,

for n = 3 and m = 1, over X, where X ∩ {[ ]} = ∅. Let T0, T1, . . . , Tp, . . . ,

be a sequence of disjoint sets defined by

T0 = X, T1 = {(t1, t2, t3) | t1, t2, t3 ∈ T0},

Tp+1 = {(t1, t2, t3) | t1, t2, t3 ∈ T0 ∪T1 ∪ · · · ∪Tp ∧ (∃i ∈ {1, 2, 3}) ti ∈ Tp}.

If t ∈ Tp, then we say that t has a hierarchy p and denote it by χ(t) = p.

Put T =
⋃
{Tp | p ≥ 0}. Define a ternary operation [ ] : T × T × T → T
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by [t1t2t3] = (t1, t2, t3).

Then TX is a ternary groupoid generated by X that has the universal

mapping property in the class of ternary groupoids over X, i.e. it is the

absolutely free ternary groupoid over X. The set X is the set of prime

elements. Namely, an element t ∈ T is said to be prime in TX if t 6= [t1t2t3]

for every ti ∈ T , i = 1, 2, 3 and non-prime in the opposite case. For every

t ∈ T we define the length | t | of t, the set of subterms P (t) of t and the

set of variables var(t) of t, by:

t ∈ X ⇒ | t | = 1, t = [t1t2t3] ⇒ | t | = | t1 |+ | t2 |+ | t3 |;
t ∈ X ⇒ P (t) = {t}, t = [t1t2t3] ⇒ P (t) = {t} ∪P (t1)∪P (t2)∪P (t3);

t ∈ X ⇒ var(t) = {t}, t = [t1t2t3]⇒ var(t) = var(t1)∪var(t2)∪var(t3).

A ternary groupoid G is said to be injective if

[a1a2a3] = [b1b2b3] ⇒ a1 = b1, a2 = b2, a3 = b3.

The absolutely free ternary groupoid TX is injective. It is characterized by:

Theorem 1. ([16], Thm.11.2) A ternary groupoid G is absolutely free over

a nonempty set X if and only if the following two conditions are satisfied:

(1) G is injective;

(2) X is the set of prime elements in G that generates G.

Remark. We refer to this theorem as Bruck Theorem for the class of

all ternary groupoids. This theorem for the binary case is stated in [5] as

Lemma 1.5.

The notion of ternary groupoid powers is considered in [8] and [11]. We

denote by E = (E, [ ]) the ternary groupoid of terms over one-element set

{e}. Note that

E = {e, [3e], [ee[3e]], [[3e]ee], [e[3e]e], [e[3e][3e]], [[3e]e[3e]], [[3e][3e]e], [ee[ee[3e]]], . . . }.
The elements of the set E are called ternary groupoid powers and we denote

them by f, g, h, fi, . . . Every element f ∈ E induces on a ternary groupoid

G a transformation fG : G→ G, called the interpretation of f in G defined

by:

(∀a ∈ G) fG(a) = ϕa(f),

where ϕa : E → G is the homomorphism such that ϕa(e) = a. More

explicitly:

e(a) = a, [f1f2f3](a) = [f1(a)f2(a)f3(a)]

where fi(a) stands for fGi (a), i = 1, 2, 3. Note that if G = E, then the

above formulas, for every g ∈ E, become

e(g) = g, [f1f2f3](g) = [f1(g)f2(g)f3(g)].
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If one defines an operation ◦ on E by f ◦ g = f(g), then one obtains an

algebra (E, [ ], ◦) with one ternary and one binary operation, [ ] and ◦
respectively, such that:

e ◦ g = g, [f1f2f3] ◦ g = [(f1 ◦ g)(f2 ◦ g)(f3 ◦ g)],

for any f1, f2, f3, g ∈ E. It is easily shown that (E, ◦, e) is a cancellative

monoid.

Proposition 1. ([8], [11]) If t, u ∈ T and f, g ∈ E, then:

(a) | f(t) | = | f | · | t |;
(b) t ∈ P (f(t));

(c) f(t) = f(u) ⇒ t = u;

(d) f(t) = g(t) ⇒ f = g;

(e) f(t) = g(u) ∧ (| f | = | g | ∨ | t | = |u |) ⇔ f = g ∧ t = u;

(f) f(t) = g(u) ∧ | t | > |u | ⇔ (∃! h ∈ E \ {e})( t = h(u) ∧ g = f(h)).

Definition 1. Given a ternary groupoid G = (G, [ ]), an element a ∈ G is

said to be primitive in G if a 6= f(c), for any c ∈ G and any f ∈ E \ {e}; a
is said to be potent in G if it is not primitive. Specially, primitive elements

and potent elements in TX are called primitive ternary terms and potent

ternary terms, respectively.

Proposition 2. ([7]) The following conditions are equivalent:

(a) v is primitive in TX ;

(b) (∀u ∈ T ) (∀f ∈ E) (v = f(u)⇒ f = e);

(c) (∀u ∈ T ) (∀f ∈ E) (v = f(u)⇒ v = u).

The proof of the next proposition can be obtained in the same manner

as in the binary case ([7]).

Proposition 3. For any term t ∈ T there is a unique primitive ternary

term u ∈ T and a unique f ∈ E such that t = f(u).

In that case we call u the base of t, f the power of t, | f | the exponent

of t, and denote them by t = u, t∼ = f and | t∼ |, respectively.

Proposition 4. Let t1, t2, t3 be ternary terms.

(a) If ti, tj have different bases for at least one pair (ti, tj), where i, j ∈
{1, 2, 3}, then: [t1t2t3] = [t1t2t3] and ([t1t2t3])

∼ = e.

(b) If t1 = t2 = t3 = u, then [t1t2t3] = u and ([t1t2t3])
∼ = [t∼1 t

∼
2 t
∼
3 ].

Proof. (a) Let t1, t2, t3 ∈ T . By Prop.3, let ti = fi(ui), where ui = ti,

fi = t∼i for i ∈ {1, 2, 3} and let t = [t1t2t3] = f(u), where u = t, f = t∼.

Without loss of generality, let u1 6= u2. We claim that f = e. Suppose

that f = [f1f2f3]. Then f(u) = [f1f2f3](u) = [f1(u)f2(u)f3(u)] and f(u) =
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[t1t2t3] = [f1(u1)f2(u2)f3(u3)]. By the injectivity of TX , fi(ui) = fi(u) and

by Prop. 1 (c) it follows that ui = u, i ∈ {1, 2, 3}, and this contradicts the

supposition u1 6= u2. Thus, f = e, i.e. t = u = [t1t2t3].

(b) Let t1 = t2 = t3 = u, ti = fi(u), i ∈ {1, 2, 3} and t = [t1t2t3] =

g(v). Then g(v) = [f1(u)f2(u)f3(u)]. Since v is a primitive term and

|[f1(u)f2(u)f3(u)]| ≥ 3, it follows that g 6= e. Let g = [g1g2g3]. Then

[f1(u)f2(u)f3(u)] = g(v) = [g1g2g3](v) = [g1(v)g2(v)g3(v)].

By the injectivity of TX it follows that gi(v) = fi(u), i ∈ {1, 2, 3}. As u

and v are primitive terms, neither |u | > | v | nor | v | > |u | (Prop.1 (f)).

Therefore |u | = | v |. By Prop.1 (e) it follows that fi = gi, i ∈ {1, 2, 3} and

u = v. Thus, [t1t2t3] = u. By [t1t2t3] = [f1(u)f2(u)f3(u)] it follows that

([t1t2t3])
∼ = g = [f1(u)f2(u)f3(u)] = [t∼1 t

∼
2 t
∼
3 ].

�

3. A construction of canonical objects in Psc

The ternary subgroupoid of a ternary groupoid G = (G, [ ]) generated by

an element a ∈ G will be denoted by 〈 a 〉 and called the mono-generated

ternary subgroupoid of G with the generator a. A ternary groupoid G

is said to be power-semicommutative if every mono-generated ternary sub-

groupoid of G is semicommutative. We denote the class of power-semicom-

mutative ternary groupoids by Psc. Mono-generated ternary subgroupoids

of a ternary groupoid can be characterized as:

(∀a ∈ G) 〈 a 〉 = {f(a) : f ∈ E}.

This enables to obtain an axiom system for Psc.

Proposition 5. A ternary groupoid G is power-semicommutative if and

only if

(∀a ∈ G) (∀f1, f2, f3 ∈ E) [f1(a)f2(a)f3(a)] = [f3(a)f2(a)f1(a)].

As a consequence of Proposition 5 it follows that the class of power-

semicommutative ternary groupoids Psc is a variety of ternary groupoids

defined by the system of identities

{[f1(x)f2(x)f3(x)] ≈ [f3(x)f2(x)f1(x)] : f1, f2, f3 ∈ E}.

We are looking for a canonical groupoid in Psc.

Definition 2. A groupoid R = (R, [ ]∗) is called a canonical power-

semicommutative ternary groupoid if the following conditions are satisfied:

(C0) X ⊆ R ⊆ T and t ∈ R⇒ P (t) ⊆ R;
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(C1) t1, t2, t3, [t1t2t3] ∈ R⇒ [t1t2t3]
∗ = [t1t2t3];

(C2) R is a free ternary groupoid in Psc over X (i.e. Psc-free over X).

Further on we will use an ordering on T assuming that X is a linearly

ordered set ([9]), where the ordering relation is denoted by ≤. Ternary

terms are ordered so that a ternary term of a particular hierarchy comes

before any term of a higher hierarchy and among ternary terms of equal

hierarchy lexicographical ordering is used, with ternary terms earlier in the

lexicographical ordering coming first. The precise definition is given below.

Definition 3. Let X be a linearly ordered set and t, u ∈ T .

(i) t, u ∈ X ⇒ (t ≤ u in T ⇔ t ≤ u in X);

(ii) χ(t) < χ(u) ⇒ t < u;

(iii) If χ(t) = χ(u) ≥ 1 and t 6= u, where t = [t1t2t3], u = [u1u2u3], then

t < u if and only if

[t1 < u1 ∨ (t1 = u1 ∧ t2 < u2) ∨ (t1 = u1 ∧ t2 = u2 ∧ t3 < u3)].

Then ≤ is a linear ordering of T .

We will use the free semicommutative ternary groupoid constructed as

follows ([9]). Define a subset Tsc of T by

Tsc = X ∪ {t ∈ T \X : [t1t2t3] ∈ P (t)⇒ t1 ≤ t3}
and an operation [ ]′ on Tsc by [t1t2t3]

′ = [t1t2t3] if t1 ≤ t3, and, [t1t2t3]
′ =

[t3t2t1] if t3 < t1, for every t1, t2, t3 ∈ Tsc. Then Tsc = (Tsc, [ ]′) is a canoni-

cal semicommutative ternary groupoid over X.

Specially, Esc = (Esc, [ ]′) is a canonical semicommutative ternary groupo-

id over e, where Esc = {e} ∪ {f ∈ E \ {e} : [f1f2f3] ∈ P (f)⇒ f1 ≤ f3}.
Let ψ : E → Esc be a homomorphism from E into Esc such that ψ(e) = e.

For every f ∈ E put ψ(f) = f . If f = [f1f2f3] ∈ E, we obtain that

[f1f2f3] = [f1 f2 f3]
′. For instance, if f = [

3
e], then ψ(f) = [

3
e] = [

3
e], but if

f = [[
3
e]ee], then ψ(f) = [[

3
e]ee] = [[

3
e]e e]′ = [[

3
e]ee]′ = [ee[

3
e]].

Clearly, if f ∈ Esc, then f = f .

A term t ∈ T is said to be

(1) laterally order-regular if t ∈ X or (t = [t1t2t3] ∧ t1 ≤ t3).
Specially, a ternary groupoid power f is laterally order-regular if

and only if f = e or (f = [f1f2f3] ∧ f1 ≤ f3).
(2) order-regular if t ∈ X or (t = [t1t2t3] ∧ t1 ≤ t2 ≤ t3).

Specially, a ternary groupoid power f is order-regular if and only if

f = e or (f = [f1f2f3] ∧ f1 ≤ f2 ≤ f3).
By induction on the length of f , one can show the following two statements

as in the binary case ([6]).
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Lemma 1. Let f, g, h ∈ E.

(a) If f < g, then f(h) < g(h).

(b) f(h) is laterally order-regular (order-regular) if and only if f and h are

laterally order-regular (order-regular).

To obtain a description of the canonical objects in Psc, define the set

R = {t ∈ T : u ∈ P (t)⇒ u∼ ∈ Esc}. (1)

In other words, a term t ∈ R if and only if the power of any subterm u

of t is laterally order-regular, i.e. if u ∈ X or (u = [u1u2u3]⇒ u∼1 ≤ u∼3 ).

From (1) we obtain the following consequences:

(a) X ⊂ R ⊂ T ;

(b) [t1t2t3] ∈ R⇒ t1, t2, t3 ∈ R;

(c) t1, t2, t3 ∈ R⇒ {[t1t2t3] 6∈ R⇔ t1 = t2 = t3 ∧ t∼3 < t∼1 };
(d) t1, t2, t3 ∈ T ⇒ {[t1t2t3] ∈ R⇔ t1, t2, t3 ∈ R ∧

∧ ((∃i, j ∈ {1, 2, 3}) ti 6= tj ∨ (t1 = t2 = t3 ∧ t∼1 ≤ t∼3 ))}.
Define an operation [ ]∗ on R by:

t1, t2, t3 ∈ R ⇒ [t1t2t3]
∗ =

{
[t1t2t3], if [t1t2t3] ∈ R
[t3t2t1], if t1 = t2 = t3 ∧ t∼3 < t∼1 .

(2)

Theorem 2. The groupoid R = (R, [ ]∗) is a canonical power-semicommuta-

tive ternary groupoid over X.

Proof. From (c), (d) and (2) it follows that R = (R, [ ]∗) is a ternary

groupoid. It is clear that X is the set of primes in R and generates R. To

prove that R ∈ Psc, it suffices to show that every mono-generated ternary

subgroupoid of R is semicommutative. For that reason we will use the

interpretation of f ∈ E in R, denoted by f∗(t):

(∀t ∈ R) (e∗(t) = t ∧ [f1f2f3]∗(t) = [f1∗(t)f2∗(t)f3∗(t)]
∗) (3)

By induction on the length of f (| f | = 2k− 1, k ∈ N) and using Lemma 1

(a), one can show that for every t ∈ R:

1) f ∈ Esc ⇒ f∗(t) = f(t); 2) f ∈ E ⇒ f∗(t) = f(t).

Namely, for 1): if k = 1, then f = e and e∗(t) = t = e(t). Assume

that the claim is true for all the powers f up to some length 2k − 1 and

let f = [f1f2f3] ∈ Esc be such that | f | = 2k + 1. Then | fi | ≤ 2k − 1,

i ∈ {1, 2, 3} and thus

f∗(t) = [f1f2f3]∗(t) = [f1∗(t)f2∗(t)f3∗(t)]
∗ =

= [f1(t)f2(t)f3(t)]
∗ = [f1f2f3]

′(t) = f(t).
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For 2): let f ∈ E. If f ∈ Esc, then by (a), f∗(t) = f(t) = f(t). Therefore,

let f ∈ E \ Esc. For the shortest f ∈ E \ Esc, i.e. for f = [[
3
e]ee], we have

f∗(t) = [[
3
e]ee]∗(t) = [[

3
e]∗(t)e∗(t)e∗(t)]

∗ =

= [[
3
e](t)e(t)e(t)]∗ = [[

3
e]ee]′(t) = [ee[

3
e]](t) = f(t).

Assume that the claim is true up to some f with | f | = 2k − 1 and let

f = [f1f2f3] ∈ E \ Esc be with | f | = 2k + 1. Then | fi | ≤ 2k − 1,

i ∈ {1, 2, 3} and thus

f∗(t) = [f1f2f3]∗(t) = [f1∗(t)f2∗(t)f3∗(t)]
∗ =

= [f1(t)f2(t)f3(t)]
∗ = [f1 f2 f3]

′(t) = [f1f2f3](t) = f(t).

Now we will show that every mono-generated ternary subgroupoid 〈 t 〉∗,
t ∈ R, is a semicommutative ternary subgroupoid of R, i.e. R ∈ Psc.

Namely, let t ∈ R. Then by 2), f∗(t) = f(t) for every f ∈ E, i.e.

{f∗(t) : f ∈ E} ⊆ {f∗(t) : f ∈ Esc}. Since Esc ⊂ E and by 1), it fol-

lows that the inverse inclusion is true as well. Therefore, {f∗(t) : f ∈ E} =

{f∗(t) : f ∈ Esc}. Using the fact that for any t ∈ R, 〈 t 〉∗ = {f∗(t) : f ∈ E}
one obtains that 〈 t 〉∗ ∈ Sc.

It remains to show that the ternary groupoid R has the universal map-

ping property for Psc over X.

Let G = (G, [ ]′′) ∈ Psc, λ : X → G be any mapping and ϕ : TX → G be

the homomorphism that is an extension of λ. If t1, t2, t3 ∈ R and [t1t2t3] ∈
R, then ϕ([t1t2t3]

∗) = ϕ([t1t2t3]) = [ϕ(t1)ϕ(t2)ϕ(t3)]
′′. If [t1t2t3] 6∈ R, then

t1 = t2 = t3 and t∼3 < t∼1 . Let ti = u and ti = fi(u) for some fi ∈ E,

i ∈ {1, 2, 3}, i.e. ti ∈ 〈 u 〉∗. It is clear that ϕ(ti) ∈ 〈 ϕ(u) 〉 and so

ϕ([t1t2t3]
∗) = ϕ([t1t2t3]) = [ϕ(t3)ϕ(t2)ϕ(t1)]

′′ = [ϕ(t1)ϕ(t2)ϕ(t3)]
′′,

since G ∈ Psc. Therefore, ϕ|R : R → G is a homomorphism that extends

λ. Hence, R is Psc-free groupoid over X that has the properties (C0) and

(C1). Thus, (1) and (2) give a description of the canonical objects in the

variety of power-semicommutative ternary groupoids. �

4. A characterization of Psc-free ternary groupoids

We will define a subclass of the class Psc that is larger than the class of

Psc-free ternary groupoids called the class of Psc-injective ternary groupoids

in order to obtain a characterization of free objects in Psc. For that rea-

son we will use the properties of the corresponding Psc-canonical ternary

groupoid R = (R, [ ]∗) related to the elements of R that are not prime in

R. The class of Psc-injective ternary groupoids will be successfully defined

if the following two conditions are satisfied:
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1) the class of Psc-injective ternary groupoids should enable a characte-

rization of Psc-free ternary groupoids analogously as in Theorem 1;

2) the class of Psc-free ternary groupoids has to be a proper subclass of

the class of Psc-injective ternary groupoids.

Therefore, we will state some properties that are related to the non-

prime elements in (R, [ ]∗) that are necessary for defining the notion of

Psc-injectivity.

Note that t ∈ R is primitive in R if and only if t is primitive in TX .

Similarly as in Prop.3 and Prop.4 one obtains:

Lemma 2. Let t1, t2, t3 ∈ R.

a) For any t ∈ R there is a unique primitive term u ∈ R and a unique

f ∈ Esc, such that t = f∗(u). Here we also write, t = u and t∼ = f .

b) If ti, tj have different bases for at least one pair ti, tj, i, j ∈ {1, 2, 3},
then: [t1t2t3] = [t1t2t3] and ([t1t2t3])

∼ = e.

c) If t1 = t2 = t3 = u, then: [t1t2t3] = u and ([t1t2t3])
∼ = [t∼1 t

∼
2 t
∼
3 ]′.

If a term t ∈ R is not prime in R, then t = [t1t2t3]
∗ for t1, t2, t3 ∈ R. In

that case we say that (t1, t2, t3) is a triple of divisors of t in R, where t1 is

the left, t2 is the middle and t3 is the right divisor of t; we write (t1, t2, t3)|t.

Proposition 6. Let t be a non-prime element in R. Then there is a unique

triple (t1, t2, t3) of R3 such that t = [t1t2t3]
∗ = [t1t2t3].

We call [t1t2t3] the canonical triple of divisors of t in R. This triple

coincides with a triple of divisors in TX .

Proof. If t ∈ R \X then t ∈ T \X and thus t = [t1t2t3] for a unique triple

(t1, t2, t3) of T 3. Since [t1t2t3] ∈ R it follows that t1, t2, t3 ∈ R and thus

t = [t1t2t3]
∗ = [t1t2t3]. �

Proposition 7. If ui, vi ∈ R, i ∈ {1, 2, 3}, are such that [u1u2u3]
∗ =

[v1v2v3]
∗, and [u1u2u3] 6∈ R or [v1v2v3] 6∈ R, then ui = vi, i ∈ {1, 2, 3}, and

u∼2 = v∼2 , {u∼1 , u∼3 } = {v∼1 , v∼3 }.

Proof. If [u1u2u3] 6∈ R and [v1v2v3] ∈ R, then by the consequence (c)

of (1) (Definition of R), u1 = u2 = u3 = α, u∼3 < u∼1 , where α is a

primitive term in R, and thus there are fi ∈ Esc such that ui = fi(α),

where fi = u∼i , i ∈ {1, 2, 3}. Therefore, the equation [u1u2u3]
∗ = [v1v2v3]

∗

becomes [u3u2u1] = [v1v2v3] in TX , i.e. [f3(α)f2(α)f1(α)] = [v1v2v3], that

implies f3(α) = v1, f2(α) = v2, f1(α) = v3 and v1 = v2 = v3 = α, v∼1 = f3,

v∼2 = f2, v
∼
3 = f1. Thus, ui = vi, i ∈ {1, 2, 3}, and, u∼1 = v∼3 , u∼2 = v∼2 ,

u∼3 = v∼1 . The same conclusion is true when [u1u2u3] ∈ R and [v1v2v3] 6∈ R.

If [u1u2u3] 6∈ R and [v1v2v3] 6∈ R, then u1 = u2 = u3 = α, u∼3 < u∼1 ,
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where α is a primitive element in R and v1 = v2 = v3 = β, v∼3 < v∼1 , where

β is a primitive element in R. So, we can write ui = u∼i (α), vi = v∼i (β), i ∈
{1, 2, 3}. The equation [u1u2u3]

∗ = [v1v2v3]
∗ becomes [u3u2u1] = [v3v2v1]

in TX and thus ui = vi, i.e. u∼i (α) = v∼i (β). This implies that u∼i = v∼i ,

α = β, i.e. ui = vi, i ∈ {1, 2, 3} and u∼1 = v∼1 , u∼3 = v∼3 .

Therefore, [u1u2u3]
∗ = [v1v2v3]

∗ and ([u1u2u3] 6∈ R or [v1v2v3] 6∈ R)

implies that ui = vi, i ∈ {1, 2, 3}, and u∼2 = v∼2 , {u∼1 , u∼3 } = {v∼1 , v∼3 }. �

By Prop.6 and Prop.7 one obtains the following statement.

If [u1u2u3]
∗ = [v1v2v3]

∗, then:

1) u1 = v1, u2 = v2, u3 = v3, when [u1u2u3], [v1v2v3] ∈ R or [u1u2u3],

[v1v2v3] 6∈ R;

2) u1 = v3, u3 = v1, when ([u1u2u3] 6∈ R and [v1v2v3] ∈ R) or ([u1u2u3] ∈
R and [v1v2v3] 6∈ R).

In that case ui = vi and u∼i = v∼i , for i = 1, 2, 3.

The pertinent result in this regard is the following

Corollary 1. Let w ∈ R be a non-prime element in R, i.e. w = [v1v2v3]
∗.

a) If w is primitive in R, then (v1, v2, v3) is the unique triple of divisors

of w (the canonical one).

b) If w is a potent term in R, i.e. v1 = v2 = v3, then (v3, v2, v1) is the

unique triple of divisors in R when v∼1 = v∼3 , and (v1, v2, v3), (v3, v2, v1)

are the only two triples of divisors of w when v∼1 > v∼3 .

Now we will introduce the concept of injectivity in Psc.

Definition 4. A ternary groupoid H = (H, [ ]) is said to be Psc-injective

if the following conditions are satisfied.

(I0) H ∈ Psc.
(I1) For any a ∈ H there is a unique primitive element b ∈ H and a

unique f ∈ Esc such that a = f(b).

(Then b is called the base of a and f the power of a; we write: a = b,

a∼ = f , respectively).

(I2) Let a1, a2, a3 ∈ H. If ai 6= aj for at least one pair (ai, aj), i, j ∈
{1, 2, 3}, then [a1a2a3] = [a1a2a3] and ([a1a2a3])

∼ = e.

If ai = b, i = 1, 2, 3, then [a1a2a3] = b and ([a1a2a3])
∼ = [a∼1 a

∼
2 a
∼
3 ] when

a∼1 ≤ a∼3 or ([a1a2a3])
∼ = [a∼3 a

∼
2 a
∼
1 ] when a∼3 ≤ a∼1 .

(I3) Let a ∈ H be a non-prime element in H , i.e. a = [a1a2a3].

If a is primitive in H , then (a1, a2, a3) is the unique triple of divisors of

a.

If a is potent in H , i.e. a1 = a2 = a3, then:

a) (a1, a2, a3) is the unique triple of divisors of a when a∼1 = a∼3 ;
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b) (a1, a2, a3), (a3, a2, a1) are the unique two triples of divisors when

a∼1 > a∼3 .

By Theorem 2, Lemma 2 and Cor.1, the ternary groupoid R satisfies

the conditions (I0) − (I3). Since any Psc-free ternary groupoid over X is

isomorphic to R, one obtains that:

Proposition 8. Every Psc-free ternary groupoid is Psc-injective.

In order to prove Bruck theorem for the class Psc we will use the following

Lemma 3 (that can be proved in a similar way as in [9], Lemma 3.1).

Lemma 3. Let H = (H, [ ]) be a Psc-injective ternary groupoid such that

the set P of prime elements in H is nonempty and generates H. If

C0 = P , C1 = [C0C0C0], Ck+1 = {a ∈ H \ P : (d1, d2, d3)|a ⇒
⇒ {d1, d2, d3} ⊂ C0 ∪ · · · ∪ Ck ∧ {d1, d2, d3} ∩ Ck 6= ∅},

then H =
⋃
{Ck : k ≥ 0}, where Ck 6= ∅ for any k ≥ 0 and Ci ∩ Cj = ∅

for i 6= j.

Theorem 3. (Bruck theorem for Psc) A power-semicommutative ternary

groupoid H = (H, [ ]) is Psc-free if and only if

(i) H is Psc-injective

(ii) The set P of prime elements in H is nonempty and generates H.

Then the set of primes in H is the unique Psc-free generating set of H.

Proof. If H is Psc-free, then by Prop.8 and the fact that H is isomorphic

to R it follows that (i) and (ii) are fulfilled.

Conversely, let (i) and (ii) hold. By Lemma 3, H =
⋃
{Ck : k ≥ 0}.

To show that H is Psc-free over the set P , we need to show that it has

the universal mapping property for Psc over P . For this reason let G =

(G, [ ]′) be a power-semicommutative ternary groupoid and λ : P → G be

a mapping. Define a sequence of mappings ϕk : Ck → G inductively by:

ϕ0 = λ and let ϕi : Ci → G be defined for every i ≤ k. If a ∈ Ck+1 and

(d1, d2, d3) is a triple of divisors of a where d1 ∈ Cp, d2 ∈ Cq, d3 ∈ Cr, then

p, q, r ≤ k. Putting

ϕk+1([d1d2d3]) = [ϕk(d1)ϕk(d2)ϕk(d3)]
′

we obtain that ϕ = ∪{ϕi : i ≥ 0} is a mapping from H into G that is a

homomorphism. Therefore:

ϕ(a) = [ϕk(d1)ϕk(d2)ϕk(d3)]
′ = [ϕ(d1)ϕ(d2)ϕ(d3)]

′.

Since H is Psc-injective it follows that (d3, d2, d1) is a triple of divisors of

a as well and that

ϕ([d3d2d1]) = [ϕ(d3)ϕ(d2)ϕ(d1)]
′ = (G ∈ Psc) =
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= [ϕ(d1)ϕ(d2)ϕ(d3)]
′ = ϕ([d1d2d3]).

Thus ϕ is a well defined mapping and a homomorphism. Hence, H is

Psc-free over P . �

The next example shows that there is a Psc-injective ternary groupoid

that is not free in Psc, i.e. the class of free ternary groupoids in Psc is a

proper subclass of the class of Psc-injective ternary groupoids.

Example. Let X be an infinite countable set and R = (R, [ ]∗) be the

canonical power-semicommutative ternary goupoid over X. Define two

subsets H ⊂ R and D ⊂ H3 as follows:

H = {t ∈ R : |var(t)| = 1},
D = {(t1, t2, t3) ∈ H3 : var(ti) 6= var(tj) for at least one pair of i, j ∈ {1, 2, 3}}
and define a relation θ in D by:

(t1, t2, t3)θ(u1, u2, u3) ⇔ t2 = u2 ∧ {t1, t3} = {u1, u3}.

It is clear that θ is an equivalence relation in D. If var(t1) 6= var(t3), then

the equivalence class (t1, t2, t3)
θ = {(t1, t2, t3), (t3, t2, t1)} and if var(t1) =

var(t3), then (t1, t2, t3)
θ = {(t1, t2, t3)}.

The set of θ-equivalence classes in D is denoted by Dθ. It is of the same

cardinality as the set X and thus there is a bijective mapping ψ : Dθ → X.

Define a ternary operation [ ]′ on H by: for any t1, t2, t3 ∈ H,

[t1t2t3]′ =

{
[t1t2t3]∗, if var(t1) = var(t2) = var(t3)

ψ((t1, t2, t3)θ), if var(ti) 6= var(tj), for some pair i, j ∈ {1, 2, 3}.
(4)

It is clear by (4) that H = (H, [ ]′) is a ternary groupoid and H ∈ Psc.
Therefore, the condition (I0) of Def.4 is satisfied. The conditions (I1) and

(I2) of Def.4 are fulfilled by Lemma 2 a) and b), c) respectively.

Let t ∈ H \ X, i.e. t = [t1t2t3]
′. (The element t is not primitive in

H , because if it would be, we would obtain that var(ti) 6= var(tj), for

some pair i, j ∈ {1, 2, 3} and thus t = ψ((t1, t2, t3)
θ) ∈ X, a contradiction.)

Then t is a potent element in H and thus t1 = t2 = t3, i.e. var(t1) =

var(t2) = var(t3) and t = [t1t2t3]
∗. If t∼1 = t∼3 , then t1 = t3 and so

t = [t1t2t1]
′, i.e. (t1, t2, t1) is the unique pair of divisors of t in H . If

t∼1 6= t∼3 , then t = [t1t2t3]
′ = [t1t2t3]

∗ = [t3t2t1]
∗ = [t3t2t1]

′, since [t1t2t3]
′,

[t3t2t1]
′ ∈ 〈 t 〉∗ ∈ Psc. Hence, the condition (I3) from Def.4 is satisfied.

Thus the ternary groupoid H is Psc-injective.

Since ψ : Dθ → X is a bijective mapping, it follows that the setX\imψ =

∅, i.e. the set of primes in (H, [ ]′) is empty. By Bruck theorem for Psc
it follows that the ternary groupoid (H, [ ]′) is not Psc-free. Thus we have

proved the following
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Proposition 9. The class of Psc-free ternary groupoids is a proper subclass

of the class of Psc-injective ternary groupoids.

Hence, the characterization of Psc-free objects by means of Psc-injective

ternary groupoids is completed.
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