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Three numerical methods were applied to compute the anharmonic O–H stretching vibrational 
frequencies of the free and aqueous hydroxide ion on the basis of one-dimensional vibrational potential 
energies computed at various levels of theory: i) simple Hamiltonian matrix diagonalization technique, 
based on representation of the vibrational potential in Simons-Parr-Finlan (SPF) coordinates, ii) Numerov 
algorithm and iii) Fourier grid Hamiltonian method (FGH). 

Considering the Numerov algorithm as a reference method, the diagonalization technique performs 
remarkably well in a very wide range of frequencies and frequency shifts (up to 300 cm–1). FGH method, 
on the other hand, though showing a very good performance as well, exhibits more significant (and non-
uniform) discrepancies with the Numerov algorithm, even for rather modest frequency shifts.
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СПОРЕДБА НА НЕКОЛКУ МЕТОДИ ЗА РЕШАВАЊЕ НА ВИБРАЦИОНАТА ШРЕДИНГЕРОВА 
РАВЕНКА ПРИ СЕКВЕНЦИЈАЛЕН МОНТЕ КАРЛО-КВАНТНОМЕХАНИЧКИ ТРЕТМАН 

НА ХИДРАТАЦИЈАТА НА ХИДРОКСИДНИОТ ЈОН 

За пресметување на анхармониските вибрациони фреквенции на валентниот ОН мод за 
слободен хидроксиден јон, како и за хидроксиден јон којшто се наоѓа во воден раствор, беа применети 
три нумерички методи кои се базираат на пресметување на еднодимензионална вибрациона 
потенцијална енергија при различни нивоa на теорија: 1) едноставна техника со дијагонализација на 
Хамилтоновата матрица, во која вибрациониот потенцијал е претставен во координати на Simons-
Parr-Finlan (SPF), 2) алгоритам на Нумеров и 3) Fourier grid Hamiltonian метод (FGH). 

Во споредба со алгоритaмот на Нумеров, кој се користи како референтен метод, техниката 
која вклучува дијагонализација е особено добра во многу широко подрачје на фреквенции, како 
и поместувања на фреквенциите во однос на вредноста на парна фаза (до 300 cm–1). Од друга 
страна, иако методата FGH покажува добри перформанси, сепак кај него постојат позначајни (и 
нерамномерни) недоследности во споредба со алгоритмот на Нумеров дури и за прилично мали 
поместувања на фреквенциите во однос на вредноста за парна фаза.

Клучни зборови:   хидроксиден јон; јонски водни раствори; поместување на фреквенцијата; 
Монте Карло симулација; Fourier grid Hamiltonian метод; алгоритам на Нумеров; 
дијагонализација на Хамилтонова матрица.
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1. INTRODUCTION

Intramolecular vibrational frequencies 
are a rather significant indicator of the type 
and strength of noncovalent intermolecular 
interactions when isolated molecular species 
are embedded in condensed phases or are 
brought into contact with other molecular 
species with which they interact. From the 
experimental side, conclusions concerning the 
type of non-covalent bond are often derived 
on the basis of spectroscopically determined 
frequency shifts. As the commercial and easy-
to-use quantum chemical modeling codes 
become widespread, often such experimental 
studies are accompanied by quantum chemical 
computations of the “predicted” vibrational 
frequency shifts which are in turn compared 
to the experimental spectroscopic ones. 
However, with certain notable exceptions 
which will be discussed further in this paper, 
the available computer codes usually give the 
harmonic vibrational frequencies, which are 
almost routinely computed by diagonalization 
of the mass-weighted Hessian matrices. The 
“frequency shifts” are, therefore, in most cases 
calculated within the harmonic approximation. 
As discussed in our previous manuscripts [1–3 
and references therein], very often it comes 
out that the “predicted (harmonic) frequency 
shifts” are in fortuitous agreement with the 
experimental data, though such results have 
often been used to “confirm” the experimental 
evidence for various aspects of the intermolecular 
interactions. The most straightforward remedy 
to the situation would be to compute the more 
realistic anharmonic frequencies and frequency 
shifts. Anharmonic contributions to the overall 
observed vibrational frequency shifts may be 
as high as 30 – 40 % [1–4]. To account for the 
anharmonicity effects (and other systematic 
deficiencies of computational methods), various 
variants of the scaled quantum mechanical 
force fields methods have been developed in 
the literature [5–9]. This approach is, however, 
based on system-specific “magic” scaling 
factors, which are by any means artificial. In the 
last years, also the vibrational self-consistent 
field methodology (VSCF) has become widely 

available and implemented in computed 
codes [10, 11]. The second-order perturbative 
approach has also been efficiently automated 
by Barone for building the anharmonic force 
constants and evaluation of vibrorotational 
parameters and implemented in the Gaussian 
series of codes [12]. An efficient local mode 
approximation-based method for calculation 
of Near Infra-red (NIR) and NIR-VCD spectra 
up to the second X-H stretching overtone 
region has recently been proposed by Abbate 
et al. [13, 14]. All of these methodologies 
are, however, computationally demanding. In 
the case when one is interested in a localized 
mode for which the coupling with other intra- 
and intermolecular motions may be regarded 
as negligible, the following approach can be 
adopted. A cut through the complete vibrational 
potential energy surface (PES) is computed 
moving in an appropriate way only the atoms 
that are relevant to the mode in question. In 
such way, the one-dimensional (1D) vibrational 
potential is obtained, which may be further 
used to solve the vibrational Schrödinger 
equation. Solving the vibrational Schrödinger 
equation for an arbitrary anharmonic potential 
is, however, not a unique procedure. Numerous 
algorithms have been proposed to accomplish 
this task. In our previous studies [1–3 and 
references therein], we have used a simple 
diagonalization procedure based on the 
representation of the 1D vibrational potential in 
the Simons-Parr-Finlan type coordinates [15], 
and found out that it performs remarkably well 
for a variety of purposes. In the present case, 
we want to test the performances of this simple 
approach and of another simple method for 
solving the vibrational Schrödinger equation, 
the Fourier grid Hamiltonian approach [16, 17]. 
The benchmark with respect to which we test 
the two methodologies is the standard Numerov 
algorithm, as implemented in the LEVEL 8.0 
code [18]. We apply this testing procedure to 
the problem of computation of the anharmonic 
O–H stretching vibrational frequencies for a 
free hydroxide anion and of the aqueous OH–

ion, by a sequential Monte-Carlo-quantum 
mechanical procedure which we have recently 
implemented [19].
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2. COMPUTATIONAL DETAILS

2. 1. General computational methodology aspects

To generate the structure of liquid (OH–

(aq)), first a series of Monte-Carlo (MC) simu-
lations were carried out. All MC simulations 
were performed in the NPT ensemble, imple-
menting the Metropolis sampling algorithm, at 
T = 298 K, P = 1 atm. We first carried out a 
MC simulation of one hydroxide anion plus 83 
water molecules placed in a cubic box with side 
length of 13.35 Å, imposing periodic boundary 
conditions. These simulation conditions cor-
respond to the experimental data in Ref. [20] 
referring to the highest dilution under which 
the hydroxide ion O–H stretching band could 
still be clearly resolved or at least distinguish-
able with the applied numerical techniques. 
However, this system is relatively small from 
the viewpoint of long-range corrections (LRC) 
to the interaction energy, which were calculated 
for interacting atomic pairs between which the 
distance is larger than the cutoff radius defined 
as half of the unit cell length. The Lennard-
Jones contribution to the interaction energy be-
yond this distance was estimated assuming uni-
form density distribution in the liquid (i.e. g(r) 
≈ 1), while the electrostatic contribution was 
estimated by the reaction field method involv-
ing the dipolar interactions. We have therefore 
proceeded with a series of MC simulations us-
ing larger unit cells (e.g. 2, 3, 4 and 5 OH– ions 
with 162, 243, 324 and 405 water molecules, 
and also in a separate series of simulations we 
have added 1, 2, 3, 4 and 5 Na+ counterions in 
the corresponding simulation boxes). Details 
about these additional simulations are given 
in our previous paper devoted to the subject 
[19]. In the present study, we focus our atten-
tion on the performances of methods used to 
solve the vibrational Schrödinger equation and 
we therefore limit our discussion to the simplest 
periodic system that we have considered (1 hy-
droxide ion plus 83 water molecules). In all MC 
simulations carried out in the present study, in-
termolecular interactions were described by a 
sum of Lennard-Jones 12–6 site-site interaction 
energies plus Coulomb terms:

 
(1)

where i and j are sites in interacting molecular 
systems a and b, rij is the interatomic distance 
between sites i and j, while e is the elementary 
charge. The following combination rules 
were used to generate two-site Lennard-Jones 
parameters eij and sij from the single-site ones: 

 
(2)

 
(3)

For water, we have used the SPC model 
potential parameters [21], while the charge 
distribution in the case of hydroxide anion was 
described implementing a somewhat modified 
charged-ring (CR) description, proposed in Ref. 
[22]. More technical details about the actual 
implementiation of the CR description of charge 
distribution in the hydroxide ion can be found 
in our previous paper [19]. The parameters 
which were used in all MC simulations are 
summarized in Table 1. 

T a b l e  1

The atomic charges and Lennard-Jones 
parameters used in the Monte Carlo simulations 

(See text for details)

Site sii / Å eii / (kcal 
mol–1) q / e

SPC model of water

Hw 0.0000 0.0000 0.41000

Ow 3.1650 0.1550 -0.82000

Hydroxide ion modified CR model

Hion 0.0000 0.0000 0.07420

Oion    3.5338 0.0242 0.00000

Xion 0.0000 0.0000 -0.05371

All simulations consisted of thermalization 
phase of at least 2.52·107 MC steps, which was 
subsequently followed by averaging (simula-
tion) phase of at least 1.26·108 MC steps. Series 
of configurations from the MC simulation runs 
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were sequentially used to calculate the “in-liq-
uid” O–H stretching potential of the hydroxide 
ion by a quantum-mechanical (QM) approach. 
Due to the high statistical correlation between 
MC-generated configurations which are suf-
ficiently close to each other, performing QM 
calculations on such configurations would be 
a waste of time, as they will not add any new 
statistically relevant contribution to the results. 
A much better approach, as explained in the 
works of Coutinho et. al. [23–26], would be to 
choose statistically uncorrelated configurations 
(i.e. configurations with low statistical correla-
tion) and perform the QM computational part 
only on these configurations. The choice of sta-
tistically uncorrelated configurations is essen-
tially based on time series analysis methods for 
Markovian random processes [27, 28] (such as 
the MC chain generated by the Metropolis sam-
pling algorithm). The energy autocorrelation 
function has been used as an indicator for mu-
tual statistical correlation between subsequent 
MC-generated configurations, defined with:

 
(4) 

Integrating the energy autocorrelation 
function (more precisely, the fit of this function 
by a sum of two exponentially-decaying 
functions) from 0 to infinity, we have computed 
the correlation time (correlation step):

 
(5)

The computed C(n) from the MC simulation 
phase of OH– ion and 83 water molecules, together 
with the two-term exponential decay function fit 
is presented in Figure 1. Subsequent integration 
gives a correlation step of 435. In this particular 
case, MC configurations mutually separated by 
1305 steps (3·τ) are correlated less than 10 %. For 
sequential QM calculations which were further 
carried out in the present study from this periodic 
box, we chose 100 uncorrelated configurations 
from the equilibrated MC runs, separated by as 
much as 15000 MC steps. 

In that case, the mutual correlation between 
the configurations is negligible (3.5·10–8 %). The 
sequential QM calculations were carried out for 
100 point-charge embedded supermolecular 
clusters containing the central OH– ion and all of 
the water molecules residing in the first hydration 
shell, as determined from the analysis of the 
corresponding Oion··· Owater radial distribution 
function (Figure 2). Charge-embedding of the 
“QM” (i.e. full wavefunction) region of the 
liquid will be discussed below. For each of the 
considered OH– ions, residing in different in-
liquid environments (statistically uncorrelated, 
i.e. spanning appropriately the configurational 
space), a series of point-charge-embedded 
supermolecular cluster single-point energy 
calculations were carried out to obtain the one-
dimensional (1D) anharmonic O–H stretching 
potential energy function. 

 

A1 = 0.39595 ± 0.00333 
A2 = 0.60405 ± 0.00253 
τ1 = 21.74573 ± 0.39756 
τ2 = 705.56156 ± 12.34039 
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This series of calculations were carried out 
varying the O–H distance from 0.850 to 1.325 Å 
(in steps of 0.025 Å), moving simultaneously both 
the oxygen and hydrogen atom, while keeping 
the center of mass of the OH– ion fixed (i.e. 
mimicking as closely as possible the actual OH 
stretching mode). The O–H stretching potential 
energy functions for the point-charge embedded 
supermolecular systems were computed at 
Hartree-Fock (HF), second-order Möller-Plesset 
perturbation theoretic (MP2) and Density 
Functional Theory (DFT) levels of theory for all 
selected 100 oscillators. The standard Pople-style 
6-31++G(d,p) basis set was employed for the 
orbital expansion, solving the HF and the Kohn-
Sham (KS) SCF equations iteratively. Within 
the DFT approach, the combination of Becke’s 
three-parameter adiabatic connection exchange 
functional (B3, [29]) with the Lee-Yang-Parr 
correlation one (LYP, [30]) was used. The “fine” 
(75, 302) grid was used for numerical integration 
in all DFT calculations (75 radial and 302 
angular integration points). MC simulations were 
performed with the DICE statistical mechanics 
Monte Carlo suite of codes [31]. All quantum-
chemical calculations were performed with the 
Gaussian 03 series of codes [32]. To compute in 
a more rigorous way the in-liquid O–H stretching 
frequency of the OH– ion, besides the short-range 
intermolecular interactions with the first hydration 
shell water molecules, it is necessary to account 
for the long-range (electrostatic) influence from 
the “bulk” water molecules in an appropriate 
manner. These molecules have not been explicitly 
included in the QM cluster, as noted before. To 
fulfill this aim, the QM clusters were immersed 
in a “bath” of point charges, which were placed 
at the positions of oxygen and hydrogen atoms 
of the bulk water molecules, as generated by the 
MC simulations. In order to test the convergence 
aspects, the bulk solvent water molecules 
contained within spheres of successively larger 
radii surrounding the central hydroxide ion were 
included as point-charges and the O–H stretching 
potential energy functions for several MC-
generated configurations were computed until 
a sufficient convergence of the O–H stretching 
frequencies was achieved (up to 4–5 cm-1). Such 
convergence was achieved for a sphere radius 

value of 9 Å, which was subsequently used as a 
final cut-off value for truncation of the long-range 
electrostatic interactions of the central hydroxide 
ion with the bulk water molecules. In this way, 
about 80 bulk water molecules were included as 
“point-charge water molecules” in the quantum-
mechanical energy calculations. The values of 
the point charges chosen to model the long-range 
electrostatic interactions were the actual SPC 
charges which were used in the MC simulations: 
–0.82 e for O and +0.41 e for H.

2.2. Methods for solution of the vibrational 
Schrödinger equation

2.2.1. Diagonalization 
of the Hamiltonian matrix

The energies computed by the HF, DFT 
and MP2 methods were least-squares fitted to a 
fifth-order polynomial in ∆rOH (∆r = r – re):

 
V = V0 + k2 ∆r2 + k3 ∆r3 + k4 ∆r4 + k5 ∆r5     (6)

The resulting potential energy functions 
were subsequently cut after fourth order and 
transformed into Simons-Parr-Finlan (SPF) 
type coordinates [15]: 

ρ = 1 – rOH,e/rOH                                     (7)

(where rOH,e is the equilibrium, i.e. the 
lowest-energy, value). The one-dimensional 
vibrational Schrödinger equation was solved 
variationally. Usage of only 15 harmonic 
oscillator eigenfunctions as a basis was 
shown to lead to excellent convergence of the 
computed vibrational frequencies. Superiority 
of the SPF-type coordinates over the “ordinary” 
bond stretch ones when a variational solution of 
the vibrational Schrödinger equation is sought 
has been well established, as they allow for a 
faster convergence (with the number of basis 
functions used) and a greatly extended region 
of convergence. The fundamental anharmonic 
O–H stretching frequency (corresponding to 
the 10 →  transition) was computed from 
the energy difference between the ground ( 0 ) 
and first excited ( 1 ) vibrational states.
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 2.2.2. Numerov method

Numerov method, which is sometimes also 
called Cowell’s method, is an implicit second-
order method for approximate solution of second-
order differential equations of the form:

 
(8)

with initial conditions:
 

(9)

with the integrand f(x,y) being independent on 
y′. It is based on summing the Taylor series 
approximations for y(x + h) and y(x – h), 
substituting f(x,y) for y′′ (x) and the expression:

(10)

for the second derivative with respect to x. 
The final result obtained after the described 
procedure is:

 

                        
(11)

 

If we adopt the following notation:
 

xn = x0 + nh                         (12)   

( )nnn yxff ,=
 

(13)

and denoting as yn the approximation to 
y(xn), the following recursive formula based 
on Numerov algorithm can be derived:

 

(14)
To begin the recursion, however, two 

successive starting values of y are required, 
one of which is y0 while the other one is 
approximated by a suitable method. In the 
present study, we have used the implementation 

of Numerov method in the LEVEL 8.0 code by 
Le Roy and coworkers [18].

2.2.3. Fourier grid Hamiltonian method

The Fourier grid Hamiltonian method [16, 
17] is a discrete variable representation-based 
technique (DVR), in which the continuous 
range of coordinate values φ is represented by 
a grid of discrete values φi. We used a uniform 
discrete grid of φ values:

ϕϕ ∆= ii                    (15)

where Δφ is the uniform spacing between 
the grid points. The state function ψ  is 
represented as a vector on a discretized grid of 
points in either coordinate space or momentum 
space. The two alternative representations are:

( ) ∑∑ ⋅∆⋅=⋅∆⋅==
i

iii
i

i
ϕϕ ψϕϕϕψϕϕψψ

 
(16)

and

( ) ∑∑ ⋅∆⋅=⋅∆⋅==
i

k
iii

i
i

k kkkkk ψψψψ
 
(17)

where iϕ are basis functions. The reciprocal 
grid size in momentum space is given by:

ϕ
π
∆

=∆
N

k 2
 

(18)

where NΔφ is the total length of the coordinate 
space covered by the grid. If we denote 
the (unitary) matrix which performs a fast 
Fourier transformation (FFT) between the two 
representations by F, we obtain:

ϕψψ Fk =
 

(19)

Since the kinetic energy operator is 
diagonal in momentum representation, while the 
potential energy operator is diagonal in coordinate 
representation, we used the FFT approach to 
solve the stationary Schrödinger equation for 
the intramolecular torsional motion by the FGH 
method as developed by Marston et al. [16, 17]. 
Defining a column vector fn of the form:
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rowth -

0
0

1

0
0

nn −





























=




φ

 

                                                          (20)

we may write the n-th column of the Hamiltonian 
matrix implementing a forward and reverse 
FFT in the following way [40]:

 
(21)

The FGH calculations were carried out by 
the FGH1 code [17].

3. RESULTS AND DISCUSSION

In the present study we are primarily inter-
ested in the O–H frequency shifts upon solvation 
of the hydroxide anion. Since all X-H vibrations 
are known to be large-amplitude motions, and 
therefore, inherently considerably anharmonic, 
to compute the corresponding frequencies with 
a sufficient accuracy it is necessary to go be-
yond the widely used harmonic approximation 
in quantum chemistry. Harmonic vibrational 
frequencies are easily and straightforwardly ob-
tained by the available quantum chemistry codes 
by diagonalization of the Hessian matrices, a 
procedure which has become almost a routine, it 
has been shown in the literature that theoretically 
calculated harmonic X-H vibrational frequency 
shifts may in some cases even be in fortuitous 
excellent agreement with the experimental data, 
due to cancellation of errors [1–4]. As men-
tioned before, anharmonic contributions to the 
overall observed vibrational frequency shifts, on 
the other hand, may be as high as 30 – 40 %. In 
cases in which the coupling of the X-H motion 
with the other inter- and intramolecular motions 
is expected to be small, a simple and conve-
nient approach is to solve the one-dimensional 
Schrödinger equation using a computationally 
feasible approach. However, there are numerous 

algorithms for solution of the radial Schrödinger 
equation, and it is of certain interest to compare 
their performances in the sense of both computa-
tional feasibility and mutual quantitative agree-
ment. As described before, to obtain the 1D vi-
brational potential energy function (V = f (rOH)) 
for an OH oscillator in a particular aqueous en-
vironment, a series of 20 pointwise HF, DFT or 
MP2 energy calculations were performed for 
each O–H oscillator, varying the O–H distances 
from 0.850 to 1.325 Å with a step of 0.025 Å. 
The nuclear displacements corresponding to the 
O–H stretching vibration were generated keeping 
the center-of-mass of the vibrating hydroxide ion 
fixed. The first of the described algorithms for 
solution of the vibrational Schrödinger equation 
allows rather quick computation of vibrational 
energy levels (and their differences, correspond-
ing to the anharmonic vibrational frequencies). 
It is based on efficient sampling of the 1D vibra-
tional potential, subsequent transformation to the 
SPF coordinates, and usage of only a small num-
ber of the harmonic oscillator basis functions for 
the diagonalization. In our previous work, this 
algorithm has been efficiently used for various 
purposes [1–3 and references therein]. However, 
this algorithm has not been used so widely in the 
literature, and thus when one wants to perform 
numerous computations of the vibrational en-
ergy levels (as e.g. in the present case for 100 
OH oscillators) it would be highly desirable to 
compare its performances with those of another 
algorithms. The Numerov algorithm, described 
in the previous section, has been implemented in 
the publicly available LEVEL [18] code written 
by Le Roy and collaborators. This code has been 
widely used for solution of the radial Schröding-
er equation [33, 34 and references therein]. The 
Fourier grid Hamiltonian method [16, 17], on the 
other hand, has been claimed to be the simplest 
method for solution of both time–independent 
and time-dependent Schrödinger equation. It has 
become more and more popular in recent years. 
Therefore, it is of certain importance to test and 
compare its performances.

In Table 2, the anharmonic frequencies 
corresponding to the fundamental 10 →  vi-
brational transition for the free OH– ion com-
puted on the basis of the same 1D vibrational 
potential (computed as described before) are 
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given, together with the experimental gas-phase 
data [35]. In Tables 3 and 4 the average frequen-
cies and frequency shifts computed at the three 
different theoretical levels with three different 
algorithms are compared to the experimental 
values [20]. Experimental data have been ob-
tained by Raman spectroscopy, so the average 
frequency shifts are directly comparable to the 
experiment (i.e. no additional scaling due to the 
IR intensity distribution is required). Since the 
Numerov algorithm seems to be the most widely 
used general-purpose approach to solution of the 
vibrational Schrödinger equation, we regard it 
in this context as a sort of benchmark towards 
which the performances of other methods will 
be compared. Therefore, in Figures 3 and 4 we 
have plotted the anharmonic frequency shifts of 
the aqueous hydroxide ion with respect to the 
gas-phase value computed by diagonalization 

and FGH approach vs. the shifts obtained by the 
LEVEL code. The straight lines in Figures 3 and 
4 correspond to y = x lines. As can be seen from 
Figures 3 and 4, the diagonalization method in 
SPF-type coordinates works remarkably well for 
frequency shifts up to about 300 cm-1. The only 
remarkable discrepancy between this method and 
the Numerov algorithm appears for a very large 
upshift of about 600 cm-1, i.e. in the case of a 
very steep O–H stretching potential. For most of 
the cases relevant to the present study, however, 
the performance of this relatively simple and ef-
ficient method is therefore excellent. Though the 
general performance of the FGH method may be 
also characterized as quite good, as can be seen 
most illustratively from Figure 4, the disagree-
ment between this and the Numerov approach is 
more nonuniform and discrepancies are seen for 
even moderate frequency shifts. 

T a b l e  2
Calculated anharmonic frequencies for the isolated hydroxide ion with the three different algorithms 

for solution of the vibrational Schrödinger equation at the three different levels of theory (see text 
for details). Experimental fundamental frequency is listed as well

OH−(g) HF B3LYP MP2 Exp. a)

v / cm-1

Diagonalization 3868 3552 3652
3556Numerov 3913 3566 3667

FGH 4112 3702 3792

a)The gas-phase value is taken from Ref. [35]. 
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Considering the overall performances of 
the theoretical levels implemented (which were 
discussed in details in our previous publications), 
as can be seen from Table 4, the computed 
average MP2 frequency shifts in the present 
study were in excellent agreement with the shift 
computed from the experimental data which 
have been obtained by Raman spectroscopy.

Table 5 summarized the standard devia-
tions computed for the frequency distributions 
using the three methodologies at three levels of 

theory. It can be seen that the diagonalization 
technique leads to the narrowest frequency dis-
tribution, while the spread in the frequency val-
ues is largest when the FGH method is used. On 
the other hand, comparison between theoretical 
methods, leads to a conclusion that the spread 
of the frequency distributions increases in the 
order B3LYP < MP2 < HF. The relation of these 
parameters to the experimentally measurable 
half-widths of the Raman spectral bands is dis-
cussed elsewhere [19].

T a b l e  3
Calculated average anharmonic frequencies (in cm–1) for the 100 OH−(aq) oscillators with the three 
different algorithms, at three levels of theory, together with the experimentally determined frequency 

of the Raman band

OH−(aq) HF B3LYP MP2 Exp. a)

<v> / cm–1

Diagonalization 4063 3682 3731
3633Numerov 4130 3701 3749

FGH 4386 3846 3886

T a b l e  4
Calculated average anharmonic frequency shifts (in cm–1) with respect to the isolated ion for the 100 

OH−(aq) oscillators with the three different algorithms, at three levels of theory, together with the 
experimental data (see text for details)

OH−(aq) HF B3LYP MP2 Exp. a)

<Δv> / cm–1

Diagonalization 195.0 129.4 78.5
77Numerov 217.8 135.0 82.7

FGH 273.3 144.0 94.2

a)The experimental data were taken from Ref. [20].

T a b l e  5
Calculated standard deviations of the frequency distributions (in cm–1) for the 100 OH−(aq) 

oscillators with the three different algorithms, at three levels of theory

OH−(aq) HF B3LYP MP2

σ / cm–1

Diagonalization 66 47 63
Numerov 85 51 77

FGH 110 59 82

a)The experimental data were taken from Ref. [20].
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4. CONCLUSIONS

For a series of 100 in-liquid OH oscillators 
in the case of aqueous hydroxide ion, which have 
been obtained from a Monte Carlo simulation, 
using the charge-embedded finite-cluster 
approach, we have computed the anharmonic 
O–H stretching frequencies and the corresponding 
frequency shifts using three methods for solution 
of the vibrational Schrödinger equation: i) method 
of diagonalization of the Hamiltonian matrix 
in SPF-type coordinates, ii) Numerov method, 
iii) Fourier grid Hamiltonian method. These 
calculations were carried out on the basis of one-
dimensional OH stretching vibrational potentials 
computed at three levels of theory: B3LYP, HF 
and MP2/6-31++G(d,p). In the case of most 
oscillators, for frequency shifts up to about 
300 cm–1, the simple diagonalization technique 
performs remarkably well, the computed shifts 
with this method being in excellent agreement 
with those obtained with the Numerov algorithm. 
Though being somewhat simpler, the Fourier 
grid Hamiltonian approach gives frequency 
shifts which are in larger discrepancy with those 
computed by Numerov algorithm, even for 
moderate frequency shifts. The discrepan cies in 
the last case are also significantly nonuniform.  
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