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Abstract. Weighted Pattern Tree (WPT) algorithm is as an extension of the Pat-

tern Tree (PT) algorithm, which could be used for fuzzy modelling. This algo-

rithm utilizes the similarity between two fuzzy sets in order to quantify how much 

a particular tree model is confident to predict a given class. The Membership 

Functions (MFs) play an important role in model induction and thus on the 

model’s performance. Therefore, this paper aims to investigate the influence of 

different MFs, not only by analyzing different mathematical distributions, but 

also to investigate the influence of the number of MFs per attribute used for fuzz-

ification of the datasets, as well as the different settings of the algorithm. The 

experimental results show that WPTs with depth 10 using polygonal MFs with 

high number of MFs per attribute are excellent for describing the training data, 

while the models that are built with low number of MFs are excellent for making 

predictions for unseen data. 

Keywords: Weighted Pattern Trees, Diatoms, Membership Functions, Statisti-

cal Significance. 

1 Introduction 

In many water related studies, the aquatic biologists try to find different ways to under-

stand and reveal the relationship between the environment and how that environment 

influences on the aquatic organism’s life cycle. Typically, a water quality class is de-

fined in a certain range of the environmental stress factors in which the organism be-

longs. In such studies, the ecological experts usually relay on the data that is collected 

over period of time, and then they apply statistical methods to reveal any hidden pattern 

that can be found in the data. Usually classical statistical approaches such as canonical 

correspondence analysis, detrended correspondence analysis and principal component 

analysis are used as modelling techniques in this research area [1]. Although these tech-

niques provide useful insights in the data, they are limited in terms of interpretability, 

and in most cases they are influenced by the subjective opinion of the expert.  

With the advancements in computer science, particularly in the area of machine 

learning and data mining, where algorithms gain new knowledge from the data at hand, 

the algorithms provide better understanding of the data compared to the traditional sta-

tistical approaches. Many machine learning algorithms have provided better inside look 

in the data. They also provide models with better interpretability, and at the same time 

with improved accuracy. One such group of algorithms are decision trees [2], which 

partition the space in order to find the relationship between the input and output attrib-

utes. This could be done using various metrics to measure the benefit of making a given 

split, which has impact on the algorithm’s performance. Also, there is a sub-class of 
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decision tree algorithms that are based on the concepts of fuzzy theory, which are in-

troduced to further improve the performance. 

There is an extensive research effort in developing algorithms based on fuzzy set-

theory, and many of these advancements are inspired by crisp decision trees [2]. For 

example, Yuan and Shaw [3] proposed fuzzy decision trees induction using fuzzy en-

tropy. Janikow [4], Olaru and Wehenkel [5] have introduced other algorithms for fuzzy 

decision tree induction. Suárez and Lutsko [6], and Wang and Chen [7] have presented 

some optimizations of fuzzy decision trees, while Nikravesh [8] presented evolutionary 

computation based multi-aggregator fuzzy decision trees. As successors, the Pattern 

Tree (PT) [9] and fuzzy operator tree [10] algorithms offer several improvements over 

the previous fuzzy based algorithms. The PT algorithm is able to retain the traditional 

tree like hierarchical structure. This algorithm provides opportunity to use different ag-

gregation operators and similarity metrics with the aim to obtain better results. This is 

very important in fuzzy modelling because decisions could be made on basis on multi-

ple-criteria group decision making. There were efforts, mainly in the area of rule fuzzy 

induction, to build such algorithms, like in the research made by Kóczy, Vámos and 

Biró [11], where they have proposed fuzzy theory concepts to model complex datasets 

with different aggregation operators including triangular intersections and average ag-

gregation operators. The aggregation operators provide opportunity for multiple-crite-

ria group decision making. This can be also achieved with the Weighted Pattern Tree 

(WPT) algorithm [12], which additionally gives weights how well a given pattern tree 

represent the corresponding class. Beside the use of fuzzy aggregation operators and 

similarity metrics, the algorithm could be applied by using various MFs.  

Therefore, in this paper we experimentally evaluate the influence of the Trapezoidal, 

Triangular and Gaussian MFs on the WPT algorithm using different number of MFs 

per attribute over three ecological datasets. These datasets contain 10 input attributes 

detailing the abundances of the diatoms found in lake and one output attribute that de-

scribes the ecological status of the lake using certain parameters (in our case: Conduc-

tivity, pH and Saturated Oxygen). Furthermore, we investigate how the complexity and 

resistance to over-fitting influence on the model’s performance. Models with different 

depths (5 and 10) are used for this purpose, as well as the four variants of the PT algo-

rithm that are described in [9]. These four model variants are obtained by using various 

settings in the algorithm. We evaluate the resistance to over-fitting of the WPT algo-

rithm by calculating the Root-mean squared error (RMSE) between the two evaluation 

procedures (in the first experiments the entire data set is used for both training and 

testing, while in the second experiments a cross validation is made). In order to ensure 

that the improvement in the performance is statically significant, we use statistical sig-

nificance test. For this purpose, we use a two-stage procedure that combines the 

Aligned Friedman [13] test and post-hoc Hommel test [14], as described in [15].  

The rest of the paper is organized as follows: Section II provides description of the 

WPT algorithm and its main building blocks: definitions of the similarity metric, ag-

gregations operators, as well as the three MFs that are used. In section III, the dataset 

description as well as the experimental setup procedures are described. Section IV pre-

sents the experimental results as well as the conclusions and discussions from this ex-

perimental evaluation. Section V concludes the paper and outlines our future work. 
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2 Weighted Pattern Tree Algorithm 

The WPT algorithm uses the same concepts as the pattern tree algorithm. The similarity 

metric is also used to weight the confidence of a particular tree to predict a given class. 

Before this can be done, the WPT algorithm builds a tree model using aggregation op-

erators and fuzzy terms from the input dataset. The input values for these fuzzy terms 

are obtained by fuzzification as every algorithm based on fuzzy theory requires, which 

could be done using different mathematical distributions. In this section, first we will 

describe the main concepts that are used in the algorithm, and then we will present how 

the WPT is induced. 

In fuzzy theory, MFs are used to transform the crisp values or to transfer from the 

classical domain to fuzzy domain by a process known as fuzzification. This is an im-

portant part of the WPT algorithm, because the fuzzification has influence on the per-

formance of the algorithm. The polygonal MFs (triangular and trapezoidal MFs) have 

advantages of simplicity, but in many cases datasets consist of smoothed and nonzero 

values, which are handled much better by Gaussian MF and thus more accurate models 

are produced. Besides the impact of the MF on the model’s performance, also it is im-

portant how many MF are used per attribute. Namely, each attribute produce a prede-

fined number of fuzzy terms that could be linguistically labelled. Therefore, in this pa-

per we don’t just experimentally evaluate the different types of MFs, but also we make 

experiments by using different number of MFs per attribute. 

Another parameter that plays an important role in increasing the performance of the 

algorithm is the similarity metric. Therefore, it is important to consider metrics that will 

reflect the dataset properties. In this paper, we use the similarity metric proposed in [9], 

which could be used to calculate the similarity between two fuzzy sets A and B defined 

in the universe of discourse U as a complement of the root mean squared error metric. 

The similarity is computed as 
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where μA(xi) and μB(xi) are the membership degrees of an element xi in the fuzzy sets A 

and B, respectively. The larger the similarity is, the more similar the fuzzy sets are. 

The similarity metric could be used to evaluate the degree of similarity between a 

given fuzzy set and the class attribute. These fuzzy sets could be the initial sets that are 

obtained with fuzzification. However, they often do not provide best description of a 

given class. For that purpose, fuzzy aggregation operators are used in order to combine 

the fuzzy sets. There are several categories of aggregation operators, but mainly trian-

gular norms are used as in many other fuzzy algorithms. In this research paper, we use 

the Algebraic AND and Algebraic OR aggregation operators. However, in future our 

focus can shift towards additional aggregation operators, since they also play an im-

portant role in producing more accurate models. 
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The induction of WPT starts by fuzzification of the dataset by using a particular MF. 

Each attribute is presented by a given number of fuzzy terms. For each of the fuzzy 

terms, a pattern tree model is generated. These pattern trees are called as primitive trees, 

and also we will refer to them as trees at level 0. However, they are too simple and 

could not provide accurate results in making predictions. Thus, by using aggregation 

operators, these primitive trees could be aggregated, thus obtaining more complex mod-

els. For that purpose, first, for each primitive tree the similarity between the fuzzy set 

that corresponds to the particular tree and the fuzzy set for the class attribute is calcu-

lated. The best primitive tree, which is the tree for which highest similarity is obtained, 

is further aggregated with the remaining primitive trees. In this way, the candidate trees 

are obtained. We will refer to these trees as trees at level 1.  The candidate tree for 

which highest similarity is calculated is further aggregated with the remaining primitive 

tress, thus obtaining the candidate trees at level 2, and this is repeated until the tree 

reaches the predefined depth. In this way, for each class we obtain separate model tree, 

and for each of these trees a corresponding weight is assigned based on the similarity 

between the fuzzy set that corresponds to the tree and the fuzzy set for the class attrib-

ute. The model trees that are obtained in this way are simple trees. Besides aggregation 

of the best candidate tree with the primitive trees that are not used for making that 

candidate tree, also there is other possibility where besides the primitive trees (trees at 

level 0), also the trees at the remaining levels (levels 1, 2, etc.) could be considered in 

the aggregation. In this way, we can distinguish simple models, where in the aggrega-

tion only the trees at level 0 are aggregated with the best candidate tree, and general 

models, where the trees at all levels are considered in the aggregation. The difference 

between the PT and WPT algorithm is that in WPT besides generation of a model tree 

for each class, also a corresponding weigh is associated to that models. More details 

about the induction of the PT and WPT can be found in [9] and [12], respectively. 

3 Dataset Description and Experimental Setup 

The ecological datasets that are used to experimentally evaluate the influence of the 

shape, the number of MFs per attribute and the four different model variants are ob-

tained from a real measured dataset collected within an EU project for ecological as-

sessment of Prespa Lake [16]. During the time period of 16 months within the project 

timeframe, several physico-chemical parameters are measured. This dataset also con-

tains measurements regarding the biological aspects of the lake, through measurements 

of the diatoms’ abundances. These diatoms live in certain conditions, which are defined 

with the range of the physico-chemical parameters. Using the measured data, it is pos-

sible to find the relationship between the diatoms and the physico-chemical parameters 

in the environment. In this way, we may find out what are the required conditions in 

the environment in which a given diatom can survive. In this study, from these physico-

chemical parameters, we consider three environmental stress factors whose classifica-

tion systems can be found in the ecological literature [17, 18, 19]. Conductivity [17], 

pH [17,18] and Saturated Oxygen [18] classification systems are directly related to 
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some measured diatom species in a similar manner like the examples found in the eco-

logical literature [19]. Since we are using a single target classification algorithm, which 

could be used for prediction of a single attribute, while from the measured dataset we 

consider three physico-chemical parameters, therefore we make a separate dataset by 

considering each of these three parameters as a single target attribute. The diatom eco-

logical datasets consists from 10 input numeric attributes that represent the relative 

abundances of the 10 most abundant diatoms in the samples, and one target attribute 

that may obtain from 4 to 6 nominal values (different number of values for each dataset 

based on the considered target attribute). 

As we mentioned previously, in this paper we evaluate these three ecological datasets 

and the influence of different number of MFs per attribute (3, 4, 5, 10, 20, 30, 50 and 

100). The complexity and resistance to over-fitting of the models are evaluated by using 

the four different variants of WPTs, which could be simple weighted pattern trees 

(SWPT) and general weighted pattern trees (GWPT) with depth 5 and 10. The four 

variants of the WPTs are denoted with: SWPT5 (SWPT with depth 5), SWPT10 (SWPT 

with depth 10), GWPT5 (GWPT with depth 5) and GWPT10 (GWPT with depth 10). 

These four WPT variants lead to different properties and performances of the obtained 

models. For example, trees with higher depth (depth 10) would lead to more complex 

models but may have higher predictive power, while trees with lower depth (depth 5) 

are less complex but may have lower predictive power.  

The descriptive classification accuracy, denoted as “Train” in the experimental re-

sults, shows how well the model tree suits to the training data, where the entire data set 

is used for both training the model and testing its accuracy. However, in this way we 

will obtain high results for the models that are over-fitted. Therefore, it is needed to 

estimate how accurate the model is for unseen data. Therefore, we also use the predic-

tive classification accuracy, denoted as “Test” in the experimental results, by making 

10-fold cross validation. 

In order to confirm the statistical significance of the obtained results, the two-stage 

procedure proposed in [15] is employed, which combines the Aligned Friedman test 

[13] and post-hoc Hommel test [14]. In the first stage, non-parametric Aligned Fried-

man test [13] is used with so called aligned ranks, which is recommended when the 

number of experiments is not too large. The average rank according Aligned Friedman 

test is calculated by using Eq. 2, where k represents the number of different settings 

variants that could be used, while n is the number of datasets used in the experiments. 
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The average rank also considers the total rank for each of these parameters (k and n), 

where Xi is the total rank for the i-th dataset, while Xj is the total rank for j-th settings 

variant, respectively. For more information regarding the total rank, the reader is re-

ferred to [13]. In ER1 experiment, the number of MFs per attribute is fixed, and the 

average rank is calculated by using the three types of MFs and the four model variants, 
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so k = 12. Similarly, in ER2 experiment, the type of MFs is fixed so k = 32, while in 

ER3 experiment the model variant is fixed so k = 24. In this way, the average rank for 

each dataset is calculated, and also the average rank over all dataset is calculated by 

using Eq. 2.  

Next, the obtained rank is compared for significance with a chi-squared distribution 

for k - 1 degrees of freedom. The p-value is computed using normal approximations 

[20], and if the null hypothesis is rejected, usually with high level of significance, we 

can proceed with the post hoc Hommel test [14]. Since the Aligned Friedman test does 

not examine the difference among the settings variants, it only shows differences 

among datasets. For this purpose, pairwise comparison is performed with a post-hoc 

procedure and a control variant is selected, which is the variant with highest rank, as it 

is indicated in [15]. The calculated p-value is compared with an appropriate level of 

significance, usually 0.05, to compensate for multiple comparisons. Because the post-

hoc procedure adjusts the level of significance for each comparison, adjusted p-values 

are recommended to be used in order to make fair comparison among p-values. 

4 Experimental Results 

In this section, the experimental results are presented for the four model variants 

(SWPT5, SWPT10, GWPT5, GWPT10), as well as three types of MFs by using differ-

ent number of MFs per attribute. The descriptive and predictive classification accura-

cies are determined, and also the RMSE between these two measures is calculated in 

order to estimate the resistance to over-fitting. 

4.1 Performance Analysis 

In this section, first, we present the experimental results obtained for the Conductiv-

ity dataset (see Table 1). The experiments with the triangular MF are characterized with 

highest peak of descriptive performance when we are using thirty MFs per attribute, 

while best predictive performance is obtained with ten MFs per attribute. If we investi-

gate the different WPTs variants that we have employed, we may found out that 

GWPT5 and GWPT10 have highest predictive and descriptive classification accuracy, 

which is confirmed by the average accuracy.  

When we are using the trapezoidal MF, the models with highest descriptive and pre-

dictive performance are achieved with hundred MFs per attributes, except for the de-

scriptive analysis for GWPT5 variant when the best descriptive accuracy is achieved 

with twenty MFs per attribute. But, the average accuracy is the same as in the previous 

experiment.  

For Gaussian MF, the highest value for the model’s descriptive accuracy is when 

thirty MFs per attribute are used, while the predictive performance settle the highest 

peak between four and five MFs per attribute. In the case of Gaussian MF, the simple 

and general WPT variants are similar between each other, but it is interesting that the 

average accuracy, again, is highest for the descriptive performance for the GWPT10 
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variant, while the predictive performance is best with GWPT5. If we examine the re-

sistance to over-fitting, we can note that best value is achieve with GWPT5 variant 

using triangular MF with value of almost 6% error. In the other experiments, various 

models obtain 2 to 4% higher error when it comes to resistance to over-fitting. 

Table 1. Evaluation results for the Conductivity dataset by using different number of MFs per 

attribute. Train denotes descriptive classification accuracy, while Test denotes predictive classi-

fication accuracy. Underlined results show the models with highest descriptive classification ac-

curacy, while bolded results show the models with highest predictive classification accuracy. 

Triangular Membership Function 
 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 71.56 72.94 75.23 78.44 77.06 76.61 75.69 72.48 75.00 
6.82 

Test1 69.09 70.04 71.86 68.61 66.75 67.25 69.05 69.09 68.97 

Train2 73.39 72.94 75.23 79.36 78.90 79.82 76.15 74.31 76.26 
8.73 

Test2 69.09 69.59 71.41 68.18 65.41 66.77 70.43 66.82 68.46 

Train3 71.10 74.77 75.23 77.98 76.15 76.61 74.31 72.48 74.83 
5.93* 

Test3 69.09 70.95 71.84 72.36 66.30 66.32 71.36 69.55 69.72 

Train4 72.02 74.77 75.23 78.90 77.98 81.19 76.15 74.77 76.38 
8.12 

Test4 69.07 69.13 70.93 71.90 66.77 65.84 72.29 68.18 69.27 

Trapezoidal Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 74.31 73.85 72.94 77.06 77.52 77.98 76.15 78.90 76.09 
8.10 

Test1 69.98 67.73 65.41 71.86 63.53 68.59 68.59 72.27 68.50 

Train2 73.85 73.85 72.94 79.82 79.36 81.19 79.82 82.11 77.87 
10.31 

Test2 69.07 66.36 64.48 70.95 64.46 67.68 68.14 73.18 68.04 

Train3 73.39 74.31 76.61 78.90 80.28 77.98 76.15 78.90 77.06 
8.53 

Test3 69.98 69.09 68.20 71.43 64.03 69.05 69.03 74.13 69.37 

Train4 73.85 74.77 76.15 80.28 81.19 81.19 80.28 81.19 78.61 
11.03 

Test4 69.98 67.73 67.29 70.06 63.12 67.68 68.59 72.27 68.34 

Gaussian Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 71.56 74.77 74.31 77.52 76.61 79.36 75.69 73.85 75.46 
8.03 

Test1 68.14 70.95 73.27 68.64 67.29 65.45 68.64 64.89 68.41 

Train2 72.48 74.77 74.31 77.06 77.98 81.19 76.61 76.61 76.38 
8.55 

Test2 69.09 71.41 71.39 67.73 64.91 68.18 70.45 67.21 68.80 

Train3 73.39 74.77 75.23 77.52 75.69 79.36 75.69 73.85 75.69 
7.38 

Test3 69.55 69.52 72.79 68.64 69.13 66.36 70.00 65.80 68.97 

Train4 73.39 74.77 75.23 77.98 78.44 81.19 76.61 76.61 76.78 
8.77 

Test4 69.07 70.00 71.86 67.25 66.32 69.55 70.45 65.37 68.73 

1SWPT5, 2SWPT10, 3GWPT5, 4GWPT10 
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In Table 2, the experimental results obtained for the pH dataset are presented. The 

first part of the table depicts the influence of the triangular MF for which best descrip-

tive results are achieved using high number of MFs per attribute (fifty and hundred). 

On the other side, for predictive accuracy, the models with low number of MFs per 

attribute (between three and five) obtain best results. 

Table 2. Evaluation results for the pH dataset by using different number of MFs per attribute. 

Train denotes descriptive classification accuracy, while Test denotes predictive classification ac-

curacy. Underlined results show the models with highest descriptive classification accuracy, 

while bolded results show the models with highest predictive classification accuracy. 

Triangular Membership Function 
 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 58.26 61.01 62.84 62.84 62.39 62.84 65.60 65.60 62.67 

14.78 
Test1 56.30 57.12 56.73 48.92 41.49 45.71 48.42 43.85 49.82 

Train2 59.63 61.47 62.84 64.68 66.51 69.27 70.64 71.56 65.83 

17.58 
Test2 56.30 57.14 57.16 50.74 43.31 43.90 49.81 47.06 50.68 

Train3 60.09 61.93 61.01 63.30 62.39 62.84 66.97 65.60 63.02 

13.65 
Test3 55.82 53.90 54.44 48.44 44.22 50.80 48.87 47.10 50.45 

Train4 61.47 63.30 61.01 65.14 66.51 69.27 73.85 72.48 66.63 

17.00 
Test4 55.82 54.39 55.80 50.74 45.13 49.42 50.69 48.44 51.30 

Trapezoidal Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 59.17 60.55 61.93 62.39 65.60 67.43 66.06 65.14 63.53 

14.26 
Test1 53.01 54.85 54.46 46.58 51.13 50.24 48.42 44.29 50.37 

Train2 59.17 60.55 61.93 63.76 66.97 68.35 70.64 72.94 65.54 

16.83 
Test2 53.01 54.85 56.73 47.97 50.17 49.35 47.03 46.15 50.66 

Train3 60.55 60.09 63.30 62.39 65.60 65.60 66.06 65.14 63.59 

14.82 
Test3 52.55 55.30 55.41 46.10 48.42 47.03 50.30 43.79 49.86 

Train4 60.55 60.09 63.76 63.76 68.35 69.27 71.10 73.39 66.28 

18.26 
Test4 52.55 53.90 58.14 47.03 48.38 46.15 47.06 46.13 49.92 

Gaussian Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 58.72 57.80 61.93 63.30 62.39 59.63 66.97 65.60 62.04 

13.16 
Test1 55.35 53.01 54.89 53.92 47.94 42.51 49.81 45.17 50.32 

Train2 58.26 57.34 62.39 63.30 67.43 63.76 72.02 71.56 64.51 

16.14 
Test2 55.35 55.80 55.37 52.99 48.38 41.10 51.65 46.56 50.90 

Train3 59.17 57.80 55.50 63.30 61.01 59.63 66.06 64.68 60.89 

12.22* 
Test3 53.05 52.51 50.28 53.46 48.40 45.26 47.49 47.49 49.74 

Train4 59.63 57.80 56.42 63.76 66.06 65.60 72.02 71.56 64.11 

15.82 
Test4 53.05 56.71 52.10 52.53 48.38 43.44 50.24 48.40 50.61 

1SWPT5, 2SWPT10, 3GWPT5, 4GWPT10 
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The simple WPTs obtain best predictive accuracy, while general WPTs are better in 

descriptive analysis. The average accuracy in the overall performance analysis for the 

triangular MF, placed the GWPT10 and GWPT5 among the best for building diatom 

ecological models. WPT with depth 10 are better in ecological modelling than the WPT 

with depth 5 based on the model’s descriptive accuracy. 

The next MF is the trapezoidal function, for which higher number of MFs per attrib-

ute (from thirty till hundred) give better descriptive performance, while the models that 

have low number of MFs per attribute have best predictive performance. Regarding the 

WPT variant, the models with depth 5 are worse in both descriptive and predictive 

analysis, while both simple and general models with depth 10 are better in the experi-

mental evaluation. This is confirmed by the average performance analysis, which puts 

the SWPT10 as the best model with highest predictive accuracy, while GWPT10 is best 

in the descriptive analysis. 

And finally, the Gaussian MF doesn’t change the pattern that we found for this da-

taset. It attains high descriptive accuracy using high number of MFs per attributes (ex-

actly fifty) and low number of MFs per attribute for predictive accuracy (between three 

and ten). When it comes to depth analysis, again, simple and general WPT with depth 

10 are best for obtaining models with high descriptive and predictive accuracy. This is 

confirmed with the obtained average classification accuracy, but compared to the trian-

gular MF, SWPT10 are best in the case of Gaussian MF. The analysis of the RMSE 

regarding the resistance to over-fitting over this dataset, shows lower resistance to over-

fitting compared to the Conductivity dataset (twice much higher error of 12.22%), and 

the best model variant to build such models is using GWPT5.  The other variants are 

having 3 to 5% lower resistance to over-fitting. 

The experimental results for the last dataset that we used, the Saturated Oxygen 

dataset, are presented in Table 3. Here, the triangular MF continues the trend of sepa-

ration between the models regarding their descriptive and predictive accuracy, when it 

comes to the number of MFs per attribute. In this case, the descriptive accuracy is higher 

with higher number of MFs per attribute (more than twenty), while the models obtained 

by using low number of MFs per attribute (between three and five) are having highest 

value for predictive accuracy. There is no big difference when using simple or general 

WPT, even with different depths. That’s why there is not much difference in the average 

accuracy, where SWPT5 slightly overruns the other variants for predictive analysis, 

while GWPT10 is best in the descriptive analysis. 

If we examine the trapezoidal MF, the trend of separating the train and test perfor-

mance with different number of MFs per attribute stops here. Here, the best models are 

obtained when the number of MFs per attribute is higher than 5. When it comes to 

model variants, the results are very close, and there is not much difference between the 

models with depth 5 and 10. The average accuracy shows that the best model with 

highest descriptive accuracy is the same as for the triangular MF, while SWPT10 is best 

for obtaining models with high predictive performance. 

The best model according to the descriptive performance is the same when using 

the Gaussian MF, while best average predictive performance is obtained by using the 

GWPT10 variant. Here, there is not much difference between the descriptive and pre-

dictive performance when it comes to number of MFs per attribute. It is noticeable that 
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for the modes obtained by using more than 5 MFs per attribute, better descriptive as 

well as predictive accuracy is achieved. Here, again, there is no noticeable difference 

regarding the WPT variants, both simple and general models with different depths can 

be used and they obtain very similar results. 

Table 3. Evaluation results for the Saturated Oxygen dataset by using different number of MFs 

per attribute. Train denotes descriptive classification accuracy, while Test denotes predictive 

classification accuracy. Underlined results show the models with highest descriptive classifica-

tion accuracy, while bolded results show the models with highest predictive classification accu-

racy. 

Triangular Membership Function 
 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 60.70 61.19 63.68 65.67 65.17 62.19 67.66 63.18 63.68 
9.53* 

Test1 57.00 56.50 55.50 53.50 52.50 53.50 56.00 53.00 54.69 

Train2 60.70 61.69 64.68 67.16 66.17 66.17 68.66 69.15 65.55 
11.99 

Test2 55.50 56.50 56.50 52.50 54.50 52.00 54.50 52.50 54.31 

Train3 60.70 59.70 60.20 64.68 68.66 62.69 67.66 63.18 63.43 
11.76 

Test3 57.00 54.50 53.00 51.00 52.00 48.00 52.50 53.00 52.63 

Train4 60.20 59.70 61.69 66.67 69.65 69.65 68.66 68.66 65.61 
13.70 

Test4 56.00 54.50 55.00 53.00 53.50 49.00 52.50 52.00 53.19 

Trapezoidal Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 60.20 60.70 62.19 65.17 66.17 61.69 66.67 67.66 63.81 
11.04 

Test1 53.00 53.00 55.00 55.00 56.00 46.00 56.00 52.00 53.25 

Train2 60.20 61.19 63.68 67.66 70.65 64.68 69.15 69.15 65.80 
13.07 

Test2 53.00 52.00 55.50 57.00 58.00 46.50 54.00 51.00 53.38 

Train3 60.20 61.19 62.19 66.17 66.17 61.69 67.16 67.66 64.05 
12.01 

Test3 53.00 53.00 56.00 54.50 55.00 43.50 54.50 52.00 52.69 

Train4 60.70 61.69 63.68 67.66 68.66 64.68 69.65 69.15 65.73 
13.49 

Test4 53.50 52.00 56.00 56.50 56.50 44.50 53.50 51.50 53.00 

Gaussian Membership Function 

 3 4 5 10 20 30 50 100 Avg RMSE 

Train1 56.22 57.71 57.71 63.18 65.67 65.67 65.67 65.67 62.19 
10.95 

Test1 52.00 52.00 49.00 56.00 50.00 53.00 51.00 53.00 52.00 

Train2 56.72 58.21 58.71 65.17 67.66 70.15 69.15 69.65 64.43 
13.50 

Test2 53.00 52.50 49.50 54.00 52.50 53.00 51.00 51.00 52.06 

Train3 58.71 60.20 61.19 61.69 68.16 65.67 65.17 65.67 63.31 
15.19 

Test3 52.00 52.50 53.00 51.50 50.50 41.50 42.50 53.00 49.56 

Train4 58.71 60.20 58.71 60.70 69.65 70.15 69.15 69.65 64.61 
16.52 

Test4 54.00 53.50 52.50 50.00 51.50 44.00 43.00 56.00 54.31 

1SWPT5, 2SWPT10, 3GWPT5, 4GWPT10 
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For the Saturated Oxygen dataset, the resistance to over-fitting is better than for the 

pH dataset, and it is worse compared to the Conductivity dataset, peaking lowest error 

of 9.53%.  

The in-depth analysis found mixed patterns which cannot be distinguished. In order 

to test/report statistical significance of the results, next, we present the results from the 

two-stage procedure. 

4.2 Ranking the MFs and WPT variants 

In this section, we perform ranking by using different number of MFs per attribute, 

different types of MFs, and different WPTs variants. The ranking is done by using the 

two stage procedure presented in [15] in order to measure the statistical significance of 

the obtained results. This procedure combines the Aligned Friedman test [13] and the 

post-hoc Hommel test [14]. The results from the ranking are presented in Table 4. 

 

Table 4. The average ranks over the three datasets by using different settings (different number 

of MFs per attribute, different types of MFs and WPTs variants). The best rank is bolded and the 

model with best average rank is taken as control model for the post-hoc Hommel test. The re-

jected null hypothesis based on the Hommel adjusted p–values are underlined, and they corre-

spond to statistically significant differences between the examined and the control model. 

 

Different 

settings 
Conductivity pH Saturated Oxygen All Datasets 

ER1 Train Test Train Test Train Test Train Test 

3 86.45 40.75 82.16 22.66 83.62 36.21 290.5 91.6 

4 73.00 41.41 78.75 18.41 78.96 42.58 230.4 93.2 

5 65.66 33.92 69.12 16.92 69.25 37.75 204.6 84.4 

10 24.04 36.83 52.62 51.92 46.96 40.00 126.7 132.8 

20 28.71 82.75 38.62 68.67 22.96 43.75 91.6 194.7 

30 14.16 68.25 37.37 74.08 39.67 78.95 97.5 221.8 

50 46.54 35.08 13.38 55.96 21.79 53.14 72.6 152.7 

100 49.42 49.00 15.96 78.37 24.79 55.62 82.8 184.6 

ER2 Train Test Train Test Train Test Train Test 

Triangular 62.95 43.53 38.33 44.17 44.98 35.75 144.6 121.4 

Trapezoidal 28.62 53.00 37.87 52.98 38.98 43.58 103.8 148.3 

Gaussian 53.92 48.97 69.30 48.34 61.53 66.17 185.0 163.7 

ER3 Train Test Train Test Train Test Train Test 

SWPT5 71.18 50.71 66.77 52.87 69.25 40.20 204.7 142.6 

SWPT10 35.98 58.25 32.12 39.12 31.54 37.75 98.12 131.1 

GWPT5 61.54 33.10 68.54 57.27 61.92 64.71 192.5 157.5 

GWPT10 25.29 51.94 26.56 44.73 31.29 51.33 88.6 146.7 
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The results from this ranking confirmed what we have concluded in the previous 

section: higher number of MFs per attribute (thirty for Conductivity and fifty for pH 

and Saturated Oxygen datasets) are best for obtaining models with higher descriptive 

accuracy, and these results showed as statistically significant compared to the models 

built with lower number (three, four and five) of MFs per attribute. Completely differ-

ent picture can be seen for the models’ predictive accuracy, where lower number of 

MFs per attribute, especially five MFs per attribute, are statistically significant com-

pared to the models that are built with higher number of MFs per attribute (higher than 

ten). The conducted experiments that include all the datasets confirms this. Another set 

of experiments that were conducted evaluated different types of MFs. In most cases, 

the results for the triangular and trapezoidal MFs are statically significant compared to 

the results for the Gaussian MF. And the final analysis was made to evaluate the differ-

ent WPT variants, which confirmed some of the discussion points that we made in the 

previous section. In most of the cases simple and general WPT models with depth 10 

achieve best predictive and descriptive performance, and they are statistically signifi-

cant compared to the models with depth 5. GWPT10 obtains statically significant de-

scriptive performance compared to the models with depth 5, while SWPT10 is the best 

model in predictive analysis but without statistical significance. 

5 Conclusion 

In this paper work, we performed extensive experimental evaluation of the influence of 

the different MFs on the classification accuracy on diatom datasets using the WPT al-

gorithm. Beside the influence of the different MFs on the descriptive and predictive 

performances of the models, we also investigated the influence of the number of MFs 

use per attribute and the different WPTs variants that have different complexities on 

the accuracy of the models. The results from the evaluation revealed some interesting 

patterns, like best ranked model with highest descriptive classification accuracy can be 

obtained using high number of MFs per attribute (fifty) in combination with triangular 

MF and GWPT models with depth 10. On the other hand, models built with lower num-

ber of MFs per attribute in combination with Triangular MF and SWPT with depth 5, 

have highest predictive classification accuracy. These conclusions are based on the out-

puts obtained from the two-stage procedure for testing the statistical significance of the 

results.  

As future work, we plan to investigate other types of MFs, as well as different simi-

larity metrics and aggregation operators that influence on the classification accuracy of 

the models. 
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