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Abstract—This paper presents advanced Apache Flink applica-
tion patterns for low latency distributed data stream processing.
These patterns extend the concept of statically defined data flows
and allow Flink jobs to dynamically change at runtime, without
downtime. The introduced patterns allow dynamic configuration
and change of the application logic and processing steps for
implementing complex business scenarios. Using a real-life use
case scenario and dynamic processing rules configuration, we
present the patterns for dynamic data partitioning, dynamic
window configuration, and dynamic data aggregation. They are
implemented using the high-level APIs for windowing and aggre-
gation and the low-level process function API. The patterns are
implemented using the concept of control/configuration stream
and broadcast stream and the carrier of the control information,
control message. The real-life use case scenario tackles the
problem of processing and analyzing air pollution data obtained
from different sensors located in many different locations, as well
as visualization of the data in third-party software.

Index Terms—Apache Flink, stream processing, big data,
stream analytics, distributed processing, visualization, software

I. INTRODUCTION

A. Stream processing

Stream processing is a computer programming paradigm
where the processing of the data is being done in motion, or in
other words, the computing on the data is performed directly as
it is produced or received. The stream processing is necessary
because the majority of data are born as continuous streams:
sensor events, user activity on a website, financial trades, etc.

The goal of stream processing is to create a system (so-
called stream processor) that will react on a continuous data
stream of events in the same moment when the system receives
them. Usually, the processing logic of these systems includes
triggering some actions, updating aggregations components, or
remembering the data event in some window frame for future
usage.

On the other hand, batch processing is a programming
paradigm where a collection of multiple data events (batch
of data), which was previously stored, is being processed in a
particular moment. The batches of data could contain millions

of records and therefore the querying of the data is a process
that could take a lot of time and resources. The focus of this
processing paradigm is the high throughput of processing the
data which usually comes with the price of high latency and
not even near to real-time results generation.

When it comes to applications with use-cases that are time-
sensitive and demand a latency bounded or near real-time
feedback, the stream processing paradigm is more preferable
because it allows the systems to react to each event with low
latency, collect small groups of events, process them, and gen-
erate a result. Examples of these use-cases are the IoT, smart
ecosystems, mobile operators systems where an enormous
amount of sensors are generating data every moment. This data
carries information that needs to be processed, analyzed and
accordingly to this analysis, corresponding feedback should be
given.

For processing large volumes of generated streaming data,
there are several proposed frameworks so far: Apache Flink
[1,2,3], Apache Spark [5], Apache Storm [6], etc. Apache
Flink [1,2,3] is an open-sourced framework for processing data
in both streaming mode and batch mode. It was originally
created as part of the Stratosphere [4] research project. Flink
provides fault-tolerant and large-scaled computations. Addi-
tionally, Apache Flink provides stateful stream processing with
easy high-level and user-friendly state management. However,
Apache Flink only supports statically configuration of the
operators through hard-coding into the source code or a
configuration within the application initialization via setting
program arguments when running the Flink job.

In this paper we propose software patterns for dynamic data
partitioning, dynamic window configuration, and dynamic data
aggregation, which overcomes the limitations that currently
exist in Apache Flink, allowing more freedom and options
when building stateful streaming applications.

B. Use case scenario

To explain the concept of dynamically configured stream
processing we have developed a simple application with the



following use case scenario:
We are gathering a huge amount of sensor data from more

than 40 sensors that are set in different locations in Skopje,
North Macedonia and all of them are collecting different types
of measurements for the air pollution in the city. Each of the
sensors records the measurements at different time intervals
and sends them to a designated topic on the distributed
streaming platform Apache Kafka, i.e the sensors are data
stream producers. The sensor data is structured and it contains
information about:

• the sensor ID (string)
• the location of the sensor (longitude and latitude concate-

nated in a string)
• timestamp (date and time of the measurement)
• type (string that represents the type of the measured value

PM25, PM10, SO2, etc)
• value (number, the measured value from the sensor)
Our application serves as a stream processor that firstly

consumes some of the historic data from the sensors’ topics,
and then it continues with consuming the real-time sensors
measurements in the same moment when they occurred. This is
possible due to the offset configuration of the Kafka consumer.

The goal of the application is to enable the end-users of
the application to receive analysis and reports (statistics on
the measured values filtered by user-created rules which are
collected in different processing windows) on the data based
on their requirements (rules).

C. Limitations from statically configuration data processing
in Apache Flink

Apache Flink does not directly support dynamically config-
uration of the processors and their processing logic. It supports
statically configuration through hard-coding or via program
arguments when running the Flink job. This means that we are
not able to apply different window and aggregation strategies
to the different data streams that are processed in our system.
Even more, the data streams are processed according to the
same pre-defined windowing and aggregation strategies with
no possibility to change them without downtime (Fig. 1).

Fig. 1. Illustration of the static configuration of the operators graph imposed
by Apache Flink defualt API

To overcome these limitations, we suggest using two data
sources:

1) high throughput stream of the input (sensor) messages
consumed from a data source

2) low throughput stream of control messages consumed
from a different data source, that represents the stream
of user-defined rules and the windowing and aggregation
processing strategies.

Fig. 2. Illustration of the goal dynamical configuration of the operators graph

The control messages, together with the high and low-
level APIs of Apache Flink, will be used in the setting of
the dynamical configuration of the tasks and operators in the
stream processing as shown in Fig. 2.

II. OPERATORS IN APACHE FLINK

As shown in Figures 1 and 2, in our solution we are
using the following Flink operators to achieve the goal of the
application:

1) keyBy (data partitioning): This is one of the most
important operators in the Apache Flink framework. It
enables both physical and logical partitioning of the
data stream by a specified key. When using the keyBy
operator, the number of created logical partitions of the
data stream is the number of distinct keys. Keying a
stream shuffles the data records and the data records
with the same key are assigned to the same logical
partition. This guarantees that all data records with the
same key will be processed by the next operator on the
same physical node.

2) window (data windowing): This operator performs a
split of the data stream into a smaller collection of data
of finite size. Even though Flink supports a total of 4
types of windows, in this paper the main focus will be
on the timed windows. There are two main types of
time windows: tumbling and sliding. Windowing can be
applied to both keyed and non-keyed data streams. By
default, this is the most static operator and therefore it
was the most complex one for dynamical configuration.

3) aggregate (data aggregation): The main goal of data
windowing is to perform some kind of aggregation of
the data in the windows. Flink has build-in operators
for specific aggregation of the data like sum, maximum,
minimum, and reducing, but sometimes we need more
than one type of aggregation of the data or we need
some aggregation of the data that is not build-in.

Even though it is not shown in the figures above, we will
be leveraging stateful computations in Flink. In a state of a
Flink application, we can keep any kind of information like
a collection of previous events, some aggregated information



about those events, machine learning models parameters, etc.
There are numbers of state types in Apache Flink, that can be
used for keyed and non-keyed streams. [3]

III. DYNAMICAL CONFIGURATION OF THE OPERATORS

To dynamically configure the operators, two different ap-
proaches are used:

• The high-level API of Apache Flink with a combination
of methods and interfaces that are available in the API

• Definition of new operators through the low-level Flink
API (the process functions), that allows more freedom
and options [7, 8].

The patterns that we will define extend the concept of stat-
ically defined data flows and allow Flink jobs to dynamically
change at run-time, without downtime. The introduced patterns
allow dynamic configuration and change of the application
logic and processing steps for implementing complex business
scenarios.

A. Dynamic State Configuration

The control stream is introduced to bring the information
for the changes of the processing logic that needs to be made
on the data records, while the state should store and keep that
information. To achieve this, the control stream is represented
as a broadcast stream and it is connected to the stream of
data records. That means that the stream of control messages
is broadcasted to all physical nodes and a replica of that
stream is connected to each parallel stream of data records.
Every control message that arrives is stored into a broadcast
state represented as a MapState. When a new control message
is created, it is distributed and saved (updated) in all paral-
lel instances of the operator using processBroadcastElement.
When a new data record arrives, it is processed according to
the processing logic specified in the broadcast state by the
control message. Instead of hard-coded processing logic, the
processing logic is performed by the dynamically configured
broadcast state.

Fig. 3. Visualization of the connection of the control and input data streams

In our application, as shown in Fig. 3, the control stream
will be connected as a broadcast stream to the input data
stream (the sensor data). Every control message that arrives
will be stored into a broadcast state from type MapState,
where the key is the ID of the user who created that particular

control message, and the value will be the corresponding
control message. Having this broadcast state will help us in a
broadcast process function, to check the match between every
input message and every user-defined rule that is stored in
the broadcast map state. For each pair of an input message
(sensor data) and user-defined rule from the control messages,
an object of class MatchedMessage will be created. The result
from this connection will be a data stream of MatchedMessage
objects where each matched message object contains:

• this input message that was matched
• the rule that was matched (extracted from the control

message)
• the ID of the user who created the control message

(extracted from the control message)

B. Dynamic Data Partitioning

The keyBy operator expects only one argument, a KeySe-
lector object. The KeySelector is a generic interface with one
function that extracts the key from a given object from any
class. By default, a hard-coded KeySelector is used, which
extracts specific fields from the data record. This means that,
if the program logic should be changed, or the data records
should be partitioned differently, the Flink job should be
stopped, the changes in the program to be made offline and the
code to be resubmitted for execution. However, to overcome
these limitations and to support the desired flexibility, we have
to extract the partitioning keys in a more dynamic fashion
based on some specifications. We propose this to be done by
using dynamic state configuration and the concept of control
stream explained in the previous section.

Fig. 4. Visualization of static (left) and dynamic (right) configuration of the
keyBy operator

In our application, on the data stream of the matched
messages, we will perform partitioning of the data by a key
that represents the concatenation of the user ID and rule ID
from the rule of the matched message. This was achieved
with the implementation of our KeySelector and it represents a
dynamical configuration with the usage of the high-level API.
This kind of partitioning of the data will guarantee that all the
sensor records (input messages) which satisfy the rule created
by the user will be processed on a separate partition and the
messages won’t be mixed with the messages that don’t satisfy
the specific rule.



C. Dynamic Data Windowing

From all the operators that we are trying to configure dy-
namically, the window operator by its design is the most static
one in the Apache Flink framework. This operator requires one
of the four built-in window assigners. Each of those window
assigners represents an assigner for one of the four types of
windowing strategies that Apache Flink supports: tumbling,
sliding, session, or global. As previously mentioned our focus
will be on the timed windows (tumbling and sliding). For the
dynamical configuration of the data windowing, we will use
both approaches: definition using the high-level window API
and the low-level processFunction API.

1) High-level window API: There are 2 available time
windowing strategies (tumbling and sliding). Both window
strategies are applied to the data streams for every partition.
That is something that we wanted to change because every
user-defined rule that exists should have its windowing con-
figuration and that windowing configuration should be applied
to each partition and for every rule.

Fig. 5. Visualization of static (left) and dynamic (right) configuration of the
key By operator

The window operator expects only one argument, a window
assigner (object from the class WindowAssigner). We will
introduce our window assigner (class GenericWindowAs-
signer) that will work with the matched messages which were
created when we connected the control data stream with the
input data stream. Our window assigner will be able to extract
the windowing configuration from the user-defined rule that is
located in every matched message. The rule has the following
windowing configurations:

• the type of the windowing (textual field with valid options
tumbling or sliding)

• the size of the window (milliseconds)
• the slide of the window (milliseconds, applicable only if

the window type is sliding)

Also, our window assigner should be able to extract infor-
mation about the timestamp of the input message which is
contained in the matched message. To make the window
assigner generic and reusable for other projects every message
that enters in the window assigner should implement an in-
terface IConfigurableWindow, including the matched message
objects in our application. This interface has methods for
getting the elements that need to be windowed (for ex. the
sensor measurement in our use case) and all the windowing
configurations listed above.

Fig. 6. UML class diagram of the window assigner class. Note: The classes
filled with light yellow color are part of the Flink source code

As shown in the UML class diagram on Fig. 6 every window
assigner in Apache Flink, both the default ones and our
dynamical window assigner have 4 methods to implements.

• assignWindows - method that receives an element and
its timestamp. Based on those information, it assigns one
window (if the window type is tumbling) or multiple win-
dows (if the window type is sliding) where the element
belongs

• getDefaultTrigger - method that returns a default trigger
that will activate the window i.e. send all the collected
events/items in that window in the next operator or pro-
cess function. In the timed windows, the trigger depends
on that whether the window’s end time has passed the
current timestamp

• getWindowsSerializer - method that returns a serializer
for the window type that is being used.

• A method that returns boolean value true if the window-
ing is using the event time notion of time 1 and otherwise
false. In our case, the result is true because we’re using
event time in our case.

Our window assigner implements all of the above-listed meth-
ods in the following way:

• When creating it via a constructor, we share information
(a boolean argument) that represents the notion of time
(true means event time and false means processing time)

• For the first method (assignWindows) we have a Factory
class that based on the windowing type (available from
the IConfigurableWIndow interface), will calculate how
many windows the element belongs to as well as the
start and end time of those windows. The collection of
windows returned from the Factory is the result of this
method as well.

• Based on the boolean variable from the constructor of
the assigner, we are creating an event time default trigger

1Event time is the time at which the event has occurred on its producing
device. In our input messages, that is the timestamp field from the input
message. The opposite notion of time is processing time that represents the
time when the event was received in the application.



(which triggers the window based on the fact that the end
of the window is before the pronounced watermark 2) or
a processing time default trigger (which is triggering the
window based on the fact if the end of the window is
before the current system time of the machine where the
application is running). The created trigger is a result of
the second method of the window assigner.

• In the third method we are returning an object of type
TimeWindowSerializer, because our dynamical window
assigner is meant to work only with time windows
(tumbling or sliding)

• In the fourth method we are just returning the boolean
value that we received through the constructor of the
assigner.

2) Low-level process API: All high-level implementations
of operators are based on low-level process function. Any
functionality which is not defined could be implemented
within a process operator. In this part, we introduce an
implementation of a window operator over a partitioned data
stream. In the proposed implementation as shown in Fig. 7,
we introduced our process function which is a composition of
the two main components that are used for data and windows
management:

Fig. 7. UML class diagram of classes part of the low-level dynamical
configuration of windowing

Window Manager. This component manages all windows
that should be triggered. They are stored in a tree structure.
This means that the windows are sorted in ascending order
by the maximum timestamp of the window (the end of
the window decreased by one). This tree structure is stored
into a managed ValueState in Apache Flink. The Window
Manager provides the creation and addition of the windows
and obtaining the windows which should be triggered.

Data Manager. This component stores all the input data that
should be windowed. The input data with assigned windows
are stored in a tree structure (TreeMap in Java) so that the
data will be sorted based on the key in the map which is
the timestamp of the input messages. To be able to extract
the timestamp the input data should implement the interface
IConfigurableWindow as in the high-level configuration. The
Data Manager provides the addition of new elements, the
obtaining and the deletion of elements that belong in a certain
window.

2When working in event time, the watermark is helping us to keep track
of the progress in time while processing the events

Also, as in the high-level configuration, in the processFunc-
tion (LowLevelWindowingProcessFunction) implementation,
we must keep information about the notion of time. In the
keyed process function we have one DataManager object and
one WindowManager object. The most important thing about
these two objects is that they have to share the runtime context
of the keyed process function because both of them have to
store the windows and the input data into a ValueState.

The workflow of the keyed process function is described in
the following steps which are applied on every new element
that enters the process function:

1) Window or collection of windows where the new ele-
ment should belong are created.

2) The created window or windows are stored in the
WindowManager.

3) The element that arrived is stored in the DataManager.
4) Based on the specified notion of time, the current time

of the stream processor should be determined.
5) All the windows which should be triggered i.e the

current time is past their end time are obtained from
the WindowManager.

6) All the data that belongs in the time intervals of the
windows from the previous step is obtained from the
DataManager and collected as a result into a collection
of data. Later this collection of data will be used for
the next operators (in our use case that is the aggregate
operator).

7) The data from step 6 and the windows from step 5 are
deleted correspondingly from the DataManager and the
WindowManager.

D. Dynamic Data Aggregating

Fig. 8. Visualization of static (left) and dynamic (right) configuration of the
aggregate operator

The last step of the data stream processing and analytic
scenario that we have presented in the introduction is aggre-
gating the data collected into the windows from the window-
ing operator/process. Similar to the dynamical configuration
of the window operator, high-level and low-level dynamical
aggregation configuration is proposed.

The high-level dynamic configuration (Fig.9) is achieved
with an implementation of the aggregate function interface
(RuleAggregationFunction) from which an object is created
and is sent as an argument to the aggregate operator.

The low-level dynamic configuration (Fig. 10) is achieved
with the implementation of a low-level process function (Ag-



Fig. 9. UML class diagram of the classes part of the high level dynamical
configuration of aggregation

Fig. 10. UML class diagram of the classes part of the low level dynamical
configuration of aggregation

gregateProcessFunction) that processes the elements that be-
long to a particular window (collections of matched messages)
collected in the previous operator.

The mutual part of the low- and high level-dynamical con-
figuration is the RuleAccumulator class (Fig. 9 and 10). In both
scenarios, an object from this class is used to accumulate the
extracted numeric values from the matched message. With the
help of this class, we can successfully calculate the descriptive
statistics: minimum, maximum, average, count, first quartile
(Q1), median and third quartile (Q3).

IV. REAL-LIFE EXAMPLE

The dynamically configured stream processor that we have
designed can be used as a software component in other soft-
ware. For example, we have integrated the stream processor
with a web application that enables the user to send their rules
through a user-friendly interface. After the rules are sent the
user gets a link to his personalized real-time dashboard where
the events and event’s aggregations are visualized in the way
the user required that in the rule.

Fig. 11. Example of a dashboard created with the utilization of the stream
processor

The first plot in Fig. 11 is a time-series plot of the extracted
numeric values from all the matched messages that were
created from the user’s rule. The second one is a plot of
boxplots where each boxplot is generated from the statistics
aggregated for each time widows. The third plot is a bar plot
where each value is the count of messages that were part of the
corresponding window whose statistics are shown right above
the bar.

The benefit of using a dynamically configured stream pro-
cessor in this application is that the application can have
an unlimited number of users which will send an unlimited
number of rules and for each rule, a new dashboard will be
created while using the same stream processor.

V. CONCLUSION

In this paper, software patterns for dynamic data partition-
ing, dynamic window configuration, and dynamic data aggre-
gation in Apache Flink are presented. These patterns extend
the concept of statically defined data flows and allow Flink
jobs to dynamically change at runtime, without downtime,
allowing implementation of complex business scenarios. The
introduced software patterns are applied on real-life use case
scenario that tackles the problem of processing and analyzing
air pollution data obtained from different sensors located in
different locations, as well as visualization of the data in third-
party software.
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