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Numerical and analytical model for serviceability limit states of RC elements

A numerical and analytical model for prediction of serviceability limit states of flexural 
reinforced concrete members is outlined. The considered beam elements are investigated 
under short-term and long-term bending load. The numerical and analytical model is 
validated using existing experimental data.  Both analyses provide reliable estimation of 
in-service deflections. A multi-directional fixed crack model is included in the numerical 
model to account for the non-linear post-cracking behaviour of concrete. For long-term 
analysis, time-dependent effects of concrete, creep and shrinkage are employed in both 
models through viscoelastic concrete behaviour.
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Numerički i analitički model za granična stanja uporabljivosti elemenata

Opisan je numerički i analitički model za predviđanje graničnih stanja uporabljivosti 
savojnih armiranobetonskih elemenata. Predmetni gredni elementi ispituju se pod 
kratkotrajnim i dugotrajnim savojnim opterećenjem. Numerički i analitički model provjeren 
je uporabom postojećih eksperimentalnih podataka. Obje analize daju pouzdanu procjenu 
progiba tijekom uporabe. Model višesmjerne nepokretne pukotine uključen je u numerički 
model kako bi se uzelo u obzir nelinearno ponašanje betona nakon stvaranja pukotina 
(raspucavanja). Za dugoročnu analizu u oba modela primjenjuju se vremenski ovisni 
učinci betona, puzanja i skupljanja kroz viskoelastično ponašanje betona.
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Nummerisches und analytisches Modell für Grenzzustände der 
Verwendbarkeit von verstärkten Elementen

Beschrieben wird das nummerische und analytische Modell für die Vorhersage 
von Grenzzuständen der Verwendbarkeit von flexiblen Stahlbetonelementen. Das 
betreffende Balkenelement wird unter kurzzeitiger und langfristiger Biegebelastung 
getestet. Das nummerische und analytische Modell wurde durch Anwendung 
vorhandener experimenteller Daten überprüft. Beide Analysen geben eine zuverlässige 
Einschätzung der Verbiegung während des Gebrauchs ab. Das Modell des mehrwegigen 
unbeweglichen Risses wird im nummerischen Modell einbezogen, um das nicht lineare 
Verhalten des Betons nach Auftreten von Rissen (Spaltung) zu berücksichtigen. Für eine 
Langzeitanalyse bei beiden Modellen werden zeitabhängige Auswirkungen des Betons, 
Kriechen und Schrumpfen durch hochelastisches Verhalten des Betons, angewendet.
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1. Introduction 

In structural design of some deflection sensitive elements (such 
as beams and slabs), deflection and crack control at service load 
levels are usually major considerations, which is why accurate 
modelling of concrete stiffness after cracking is required. 
Numerous cases have been reported of structures that were in 
compliance with ultimate limit states requirements, but were 
nevertheless affected by excessive deflection or cracking. In 
many of these cases, failure to adequately account for creep 
and shrinkage at the design stage was found to be the main 
reason for such deficiencies [1].
In order to meet serviceability requirements, a concrete 
structure must perform its intended function throughout its 
working life [1]. Therefore, three most common serviceability 
limit states, namely, cracking, deflections and stress level in 
concrete and reinforcement must be controlled. 
In this paper, the main focus is set on numerical and analytical 
analysis of time variation of stresses and strains, mid-span 
deflections, and crack pattern in RC bending elements 
under sustained load. The authors present a comparison of 
numerical and analytic results with existing experimental 
data on various beams under short-term and different levels 
of sustained load. 
A reliable calculation of serviceability limit states of reinforced 
concrete elements is very often not straightforward. In fact, 
it is almost always burdened by difficulties with regard to 
estimation of non-linear behaviour of concrete under sustained 
service load. Some of the most significant aspects that make 
this calculation complex include: random distribution of 
concrete tensile strength along elements, effect of creep and 
shrinkage, time variation of tension stiffening, and variation 
of elasticity modulus of concrete over time [2]. Some of these 
parameters cannot be considered by means of the existing 
analytical procedure proposed in codes, and so the application 
of numerical models becomes essential. 
The necessity of applying a numerical model for the prediction 
of serviceability limit states additionally arises from the 
inherently random cracking process, which complicates 
prediction of deflections. An accurate prediction of deflection 
is largely affected by the location and spacing of cracks, 
which are analytically unpredictable due to random factors 
that control their spreading [3]. For example, the results of 
crack calculation procedures proposed in Eurocode 2 [4] and 
Model Code 2010 [5] are only the maximum crack width wm 
and the maximum crack space sm, which are sufficient for 
assessing the durability state, but do not ensure accurate 
determination of deflection of sensitive structural elements. 
In addition, visual impression of the crack pattern and 
response of a member can only be obtained by numerical 
analysis using the FE software. Therefore, a numerical 
model for predicting serviceability limit states is not only an 
alternative method in analytical terms but, in many cases, it 
is actually the only method that can be applied.

2. Analysed element

In order to predict the time-dependent behaviour of RC beams 
under different levels of sustained load, a numerical and analytical 
model was applied on a reference beam made of concrete class 
C30/37 subjected to four-point bending. These elements were 
experimentally tested at the Department of Concrete Structures, 
Faculty of Civil Engineering - Skopje, Republic of Macedonia [6]. 
A detailed description of the experimental program can be found 
elsewhere [7]. The geometry, reinforcement, and load scheme, 
are depicted in Figure 1, while the experimentally obtained 
material properties used in further analysis are summarized in 
Table 1. 

Figure 1.  Geometry, reinforcement, and load scheme for RC reference 
beam

Table 1. Mechanical properties of concrete and reinforcement

Mechanical properties of concrete, namely compressive 
strength and splitting tensile strength, were obtained at the 
concrete age of 40 days on cube-shaped control specimens, 
while the modulus of elasticity was tested at the same concrete 
age on cylindrical specimens using hydraulic press. Besides 
concrete mechanical properties, the modulus of elasticity 
of reinforcement and its yield strength were determined 
experimentally. The corresponding results are shown in Table 1.
The analysed beam elements of equal geometry differed only in 
the type of load, as displayed in Figure 1. According to the type 
of load, they were generally divided into two groups. The first 
group consisted of one series of beams "A", in which the beams 
were investigated under short-term service load (Fs = 11.6 kN). 
The second group consisted of two series of beams "B" and "C". 
The beams from this group were subjected to long-term load 
over a one year period. The intensity of permanent load in the 
beam series "B" (Fg = 4 kN) represented 34 % of the service load 
(Fs = 11.6 kN) and was lower than the load which produced the 
first crack. The intensity of load in the beam series "C" (Fg+q/2 
= 7.8 kN) amounted to 67 % of the service load and produced 
cracks immediately after its application.

Concrete Reinforcement

Property fck [MPa] fct [MPa] Ecm [MPa] Es  [MPa] σy [MPa]

Value 31.90 2.90 30483 200100 400
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3. Analytical model

3.1. State of stress and strain

The well-known Age-Adjusted Effective Modulus Method 
(AAEMM) proposed by Bazant was applied for predicting time-
dependent effects of concrete under sustained load.
With the known creep coefficient, shrinkage strain, and age 
coefficient, and under constant environmental conditions, this 
algebraic relation enables calculation of stresses and strains in 
concrete at any time t. Basic equations that are used to compute 
concrete and reinforcement stresses and strains over time are 
given below [8]. They can be used for uncracked and cracked 
sections respecting the reacting area of concrete. Stress and 
strain in the most compressed concrete fibre at the initial time 
t0, Eq. (1) and Eq. (2):

 (1)

 (2)

Stress in tension and compression reinforcement at the initial 
time t0,Eq. (3):

 (3)

Stress and strain in the most compressed concrete fibre at the 
final time t, Eq. (4) and Eq. (5):

 (4)

 (5)

Stress in tension and compression reinforcement at the final 
time t, Eq. (6) and Eq. (7):

 (6)

 (7)

where, according [8] are.
Mi & Ni  -  the bending moment and axial force, respectively, 

reduced in the centroid of an idealized cross-section
Ai, Ii & yi  -  geometrical characteristics of an idealized cross-

section
1/r(t0)  - urvature in the initial time t0

Mi* & Ni*  -  nfluences in the idealized age-adjusted section
Ai*, Ji* & yi*  -  geometrical characteristics of an idealized age-

adjusted section
1/Δr (t)  - the curvature change over time t

Ms & Ns  -  the bending moment and axial force in 
reinforcement resulting from free unrestricted 
shrinkage and creep deformations (approximation: 
no bond between concrete and reinforcement bars)

As, Is & ys  - geometrical characteristics of reinforcement
χ (t, t0)  - the concrete age coefficient
φ (t, t0)  - the creep coefficient.

Figure 2.  Evolution of stress and strain in cross-section over time  
(t-t0) [2]

As displayed in Figure 2, the effects of creep and shrinkage 
affect stresses and strains in concrete and consequently the 
embedded reinforcement, which is why they should not be 
neglected. Their influences result in an increase of curvature 
and drop of neutral axis towards the bottom reinforcement over 
time (Figure 2).

 
3.2. Instantaneous and time-dependent deflections

The general procedure of computing short-term deflections 
involves double integration of mean curvature over the element 
length. The mean curvature must be used, especially in the 
calculation of cracked elements, due to variation of curvature 
in a portion between two cracks as a result of bond stress 
distribution along the bars. The Simpson’s rule is applied here 
for integration of the product of mean curvature ks,m and virtual 
bending moment along the element length, which directly yields 
deflection a at the desirable section (Eq. 8) [11]:

 (8)

The deflection of a reinforced concrete flexural member under 
a sustained load increases with time as a result of three main 
effects [1]:

 - time-dependent cracking;
 - reduction of tension stiffening Δδ over time (Δδ decreases 

over time);
 - increase in curvature in each cross-section over time due to 

creep and shrinkage of concrete.

Beebly & Scott and Gilbert [9] have shown that the tension 
stiffening effect decreases over time under sustained load, which 
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is probably due to the combined effects of tension produced by 
creep, and shrinkage induced micro-cracking around steel bars. 
Almost every code explicitly or implicitly considers this long-
term tension stiffening effect, but no code puts time scale for 
the loss of beneficial effects of tension stiffening. In order to 
obtain an accurate estimation of long-term deflections, this 
must be properly taken into account [10].
The above described procedure can be employed, with some 
modifications, for calculating the long-term deflection. The 
method involves evaluation of mean curvature over the 
considered time t, as the sum of the initial curvature and the 
increase in curvature due to time-dependent effects, namely 
creep and shrinkage. Here, these effects are employed through 
the so-called reinforcement ks, creep kφ and shrinkage kcs 
curvature coefficients [12]. The bilinear interpolation method is 
also used to account for the presence of cracks in concrete, i.e. to 
account for the tension stiffening effect through the distribution 
coefficient ζ, as suggested in Eurocode 2 (Eq. 9) (Figure 3). 

Figure 3.  Bending moment versus curvature of reinforced concrete 
member in flexure [12]

 (9)

where β1 = 1.0 for deformed bars, and 0.5 for plain bars; β2 = 
1.0 for the single short-term load and 0.5 for the repeated or 
sustained load; Mcr is the moment causing the first crack, and M 
is the moment under consideration [4].
This procedure is relatively crude because it does not account for 
the loss of tension-stiffening over time - a concrete phenomenon, 
which is still not employed in the current code procedures. 
Even for the most simple cases encountered in engineering 
practice, it is necessary to double integrate the curvature along 
the element length in order to obtain a reliable estimation of in-
service deflections. Due to the extent and calculation difficulties 
of this procedure, deflection calculations are performed in 
almost every practical case according to one of simplified 
procedures proposed in the current codes. Due to their 
inherent simplicity, they include crude assumptions of complex 
concrete effects, such as cracking, tension-stiffening, creep, 
and shrinkage. In many practical cases, these serviceability 
provisions inadequately and unconservatively model the in-

service behaviour of concrete structures and must, therefore, 
be used with caution.
A commonly used approach for deflection calculation in the 
codes (ACI, AS3600, etc.), involves a well-known equation 
for effective stiffness developed by Branson. The tension-
stiffening effect in Branson’s model is simply employed through 
an average effective moment of inertia given with the empirical 
equation (10) [1]:

 (10)

where:
Mcr  - he cracking moment
Ma  - the maximum applied moment
Ief  - the effective moment of inertia
Ig  - the gross moment of inertia
Icr  - the moment of inertia of the cracked section, and the power
m  -  the empirically estimated value that can range from 3 to 4 

(for lightly reinforced elements, value 4 is recommended).

Instantaneous and long-term deflections of concrete elements 
can be calculated using equations (11) and (12), respectively, as 
proposed by many codes:

 (11)

 (12)

where:
K  -  the coefficient depending on boundary conditions of 

the element and type of load
M  - the maximum service moment
Ec  - the modulus of elasticity of concrete
L  - the span of the element
Kr  -  the empirical coefficient taking into account beneficial 

effect of compression reinforcement on the creep and 
shrinkage deformations

A’/A  -  the ratio between compression and tension 
reinforcement area

φ (t, t0)  - the creep coefficient
a0

g  - the instantaneous deflection caused by permanent load.

The reference beam deflection results obtained with these 
equations will be presented and discussed in more detail in 
Section 5.

4. Numerical model

Numerical analysis for the serviceability limit states of analysed 
elements was carried out using the FEM software DIANA - 
Version 9.4.3.
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4.1. Mathematical models

Two distinct mathematical models were applied in the analysis: 
a model with beam finite elements (1D analysis) and a model 
with plane stress elements (2D analysis) (Figure 4). In the first 
mathematical model, beam elements consisting of three nodes 
(CL9BE) were applied based on the Mindlin-Reissner theory. They 
represent the elements that are fully numerically integrated over 
their cross-section and along their axis. For integration of these 
elements along their axis and over their cross-section, the Gaussian 
integration scheme and the Simpson’s integration were used for 
two and nine nodes, respectively. In the second mathematical 
model, a two-dimensional quadrilateral isoparametric plane stress 
element with eight nodes around the element edges, and one in 
the middle (CQ18M), was used (Figure 4).
In both cases, the compression and tension reinforcement was 
modelled by means of the embedded technique of modelling with 
special elements. These special elements add stiffness to the 
elements in which they are embedded, i.e. to the elements known 
as "mother elements" (in this case, concrete elements) [13].
A physical nonlinear analysis was carried out in Diana 9.4.3 
software to account for the post-cracking concrete behaviour. 
The main source of nonlinear behaviour of concrete is mainly the 
presence of cracks. A multi-directional fixed crack model was 
applied to analyse the elements in a cracked state. This model 
seems to be the most appropriate and favourable cracking 
model for bending cases. The iterative-incremental procedure, 
namely the regular Newton-Raphson method, was used for 
accurate and fast convergence. The optimal load increment was 
automatically determined in combination with the "Arc-length" 
control and energy based convergence criteria.

4.2 Multi-directional fixed crack model

Since cracks in concrete occur in a very random manner, 
the smeared crack approach is recommended via the multi-
directional fixed crack model. Every smeared crack model is 
based on the decomposition of total strain into an elastic strain 
and crack strain (Eq. 13) [14]. The applied multi-directional 
fixed crack model ranks among the most commonly used and 
highly favoured smeared crack models. Its additional capability 
involves modelling a number of cracks that occur simultaneously 
(Eq.14) [14].

 (13)

 =  +  +  + ... (14)

where:
 - the elastic strain
 - he crack strain
 - the strain in crack number 1
 -  the strain in crack number 2 as a result of crack number 

1, etc.

The multi-directional fixed crack model in Diana 9.4.3 was 
defined through three concrete phenomena: tension softening, 
tension cut-off, and shear retention (Figure 5). 

Figure 5.  Curves applied in numerical model for tension softening, 
tension cut-off and shear retention: a) Non-linear softening 
curve; b) Constant tension cut-off; c) Constant shear 
retention

The input used in Diana 9.4.3 for defining these three 
phenomena is specified in Table 2.

Table 2. Input parameters for multi-directional fixed crack

Figure 4. Mathematical model with beam FE (left) and plane stress FE (right)

Parameters Codes in 
Diana Input

Tension softening curve TENSIO 3 Nonlinear 
(Moelands et al.)

Fracture energy Gf 0.06 N/mm

Crack bandwidth h 50 mm

Tension cut-off CRACK 1 Constant 

Shear retention curve TAUCRI 1 Constant

Shear retention factor β 0.50
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The tension softening curve was defined through two specific 
characteristics of cracked concrete: crack bandwidth h and 
fracture energy of concrete Gf. The crack bandwidth in a multi-
directional crack model usually coincides with a dimension of a 
finite element a (here h = a = 50 mm), and represents an area in 
which a crack will develop [14]. The fracture energy of concrete, 
defined as energy required for propagation of a crack through 
a unit area, is calculated herein according to the expression 
proposed in Model Code 2010 and is influenced by the size of 
the aggregate dmax (Table 3) and the mean compression strength 
of concrete fcm (Eg.15), [5].

 (15)

where:
Gfo  -  the fracture energy base value dependent on the 

aggregate size of concrete (Table 3)
fcmo  - the recommended constant value equal to 10 MPa
fcm  - he mean compression strength of concrete.

Table 3. Base values of fracture energy Gfo [Nmm/mm2]

The time-dependent effects of concrete, creep and shrinkage, 
were employed in the model through viscoelastic behaviour of 
concrete. The viscoelastic behaviour of concrete can be analysed 
in Diana 9.4.3 through the Maxwell rheological chain model, 
which is defined by the standard creep functions proposed in 

Model Code 1990 [14]. The creep and shrinkage were applied in 
time steps on a logarithmic scale for a given period of one year.

5. Results of analysis

The numerical and analytical results were compared with 
experimental data. The results of time variation of stresses 
and strains in concrete and reinforcement, short-term and 
long-term deflections, and the crack pattern, will be presented 
schematically.

5.1. Stresses and strains

The state of stress in the compressed concrete σc, tension σs and 
compression σs’ reinforcement is presented in Table 4 for the group of 
beams subjected to sustained load (Series "B" and "C"). It is obvious 
that the stress in the most compressed concrete fibre reduces over 
time, while the stress in the compression reinforcement increases 
rapidly as a result of the required equilibrium of internal forces. At 
the same time, an insignificant increase of stress can be observed 
in the tension reinforcement (Table 4). 
The first row of Table 4, which presents the experimentally 
obtained stresses in compressed concrete, remains unfilled 
because these stresses could not be obtained directly from the 
measured strains as a result of stress redistribution in concrete 
section due to the creep and shrinkage effects. However, 
stresses in the tension and compression reinforcement can be 
obtained directly from strain measurement.
An increase of stress in compression reinforcement over time can 
be observed in both cases, i.e. for uncracked and cracked beams. 
In case of the beam series "B" (uncracked elements), the stress 
in compression reinforcement over time (t = 365 days) exceeds 
by almost ten times the stress observed immediately after 

dmax [mm] Gfo [Nmm/mm2]

8 0.025

16 0.030

32 0.058

t0 = 28 days t = 365 days t0 = 28 days t = 365 days 

Series of beams “B” Series of beams “C”

σc
[MPa]

Experiment / /

σc
[MPa]

Experiment / /

Analytical model -1.91 -1.55 Analytical model -6.87 -3.45

Numerical 
model

Beam -2.52 -1.98 Numerical 
model

Beam -8.01 -4.52

P.St. -2.12 -1.69 P.St. -5.81 -4.16

σs’
[MPa]

Experiment -9.40 -85.2

σs’
[MPa]

Experiment -41.20 -140

Analytical model -10.30 -93.50 Analytical model -23.70 -156.9

Numerical 
model

Beam -16.40 -111 Numerical 
model

Beam -51.5 -161

P.St. -12.4 -101 P.St. -30.7 -138

σs
[MPa]

Experiment 10.0 -2.40

σs
[MPa]

Experiment 77.88 182

Analytical model 9.51 12.50 Analytical model 147.5 151.9

Numerical 
model

Beam 15.80 -17.90 Numerical 
model

Beam 134 151

P.St. 11.90 -26.90 P.St. 101 138
*Legend: Beam = numerical model with beam finite elements; P.St. = numerical model with plane stress finite elements

Table 4.  Stress in the most compressed concrete fibre, tension and compression reinforcement at initial (t0 = 28days) and final time (t = 365days) 
as obtained experimentally, numerically and analytically
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application of load. This increase in stress is less pronounced in 
case of the beam series "C" (cracked elements).
According to the experimentally and numerically obtained stress 
values, it can be observed that, due to the required equilibrium of 
internal forces, the initially tensile bottom reinforcement becomes 
compressive over time in the case when the beams remain 
uncracked. One of the reasons for this could be greater internal 
resultants in concrete produced by the creep and shrinkage 
effects, compared to resultants due to the external load itself. 
This change in the bottom reinforcement can also be observed in 
Figure 5 showing distribution of strains in beams "B". By contrast, 
the bottom reinforcement in the beam series "C" remains tensile 
during the whole analysed period of one year. Figure 5 and Figure 6 
present the distribution of strain over cross-section for beam series 
"B" and "C", respectively. A significant increase in compressive and 
tensile strain can be observed over time (t = 365 days) in both 
states, i.e., cracked (Beam "C") and uncracked (Beam "B"), resulting 
in lowering of the neutral axis towards the bottom reinforcement. 
A greater lowering of the neutral axis is observed in case of the 
beam series "B", leading consequently to a larger increase in strain 

in compressive concrete. For these series of beams, the analytical 
model (described in 3.1) predicts better the strain in both materials, 
namely in concrete and reinforcement.
A smaller drop of neutral axis can be observed in the beam series 
"C", which leads to a smaller increase in strain in both materials 
over time. It can be seen that the instantaneous strain in bottom 
reinforcement is overestimated in both models, the numerical and 
the analytical one (Figure 7, left), but there is a good agreement 
in both materials with the measured instantaneous strain in the 
most compressed concrete fibre, as well as with the measured 
strain at time t = 365 days (Figure 7, right).

5.2. Instantaneous and long-term deflections

A comparison between analytical (based on curvature 
integration), numerical and experimental load-deflection curves 
is illustrated in Figure 8 for the beam series "A" subjected to the 
load attaining service load Fs = 11.60 kN.
Short-term deflections (23.61 %) after the cracking moment 
are overestimated in the numerical model with beam finite 

Figure 6. Strain over cross-section (beam series "B") at initial time t0 (left) and at final time t = 365 days (right)

Figure 7. Strain over cross-section (beam series "C") at initial time t0 (left) and at final time t = 365 days (right)
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elements, and this overestimation increases with an increase in 
load. The analytical and numerical model with plane stress finite 
elements slightly overestimates these deflections, but provides 
a much better agreement with 7.78 % and 5.56 % deviation in 
terms of the experimental results, respectively.

Figure 8.  Comparison of short-term deflections (beam series "A") 
obtained analytically, numerically, and experimentally

Development of long term deflections over a period of one year 
is depicted in Figure 9. The same figure simultaneously presents 
results for both series of beams (series "B" - uncracked state, 
and series "C" - cracked state) to show the influence of the 
magnitude of sustained load on long-term deflections. According 
to these, it can be observed that the results obtained numerically 
and analytically are generally in close agreement with actual 
deflection values obtained experimentally for both beams.
Long-term deflections obtained for uncracked elements ("B"), 
as predicted by analytical (based on curvature integration) and 
numerical models, are quite similar. The actual deflections 
over the given period of one year are underestimated by both 
models. The analytical model exhibits the largest deviation in 
terms of measured deflections, namely, 26.06 %.

Flexural cracks frequently form over time under sustained 
service load, and this either between the most widely spaced 
cracks, or in the previously uncracked regions, thereby 
increasing the extent of cracking (Figure 9 and Figure 11). This 
time-dependent cracking causes a time-dependent loss of 
stiffness and an increase in deflection [1].
A correlation between time-dependent flexural cracks and 
deflections is schematically presented in Figure 8 for cracked 
beams ("C"). An increase in the final deflection can be observed 
due to the combined effects of creep and shrinkage and 
consequent formation of additional time-dependent cracks. For 
the cracked elements ("C"), numerical models estimate a long-
term deflection that is in close agreement with actual values. The 
numerically predicted long-term deflections of beam and plane 
stress elements deviate from the measured ones by 0.82 % and 
3.89 %, respectively. Analytically predicted long-term deflections 
for cracked elements ("C") based on curvature integration are 
presented in Figure 8 by means of two black dashed curves. The 
upper one predicts development of long-term deflections taking 
into account reduction of element stiffness or, more precisely, 
reduction of the tension-stiffening effect over time (β = 0.5 in 
Eg. (9)). The lower curve presents long-term deflections without 
considering this loss of tension-stiffening due to sustained load 
(β = 1.0 in Eg. (9)). According to results reported in literature [16], 
the initial tension-stiffening value reduces by about 50 % after 
50 to 60 days following the first loading. This points to the fact 
that the long-term deflections under sustained loads should be 
calculated with two different element stiffness values, since no 
codes and recommendations account for the time-dependence 
of the tension-stiffening effect. In this study, the long-term 
deflections were calculated with the initial effective stiffness 
until the 60th day following the first loading and, from this point 
in time, with a reduced stiffness due to reduction in the tension-
stiffening effect over time (β = 0.5). In this way, the final long-
term deflection obtained with this calculation procedure deviates 
by 6.35 % from the measured deflection value. 
Although the cracked element experiences larger final long-
term deflections, the creep and shrinkage effects have a greater 

influence in the case of the uncracked 
element. This can be demonstrated 
using the ratio between the final and 
instantaneous deflection in both cases. 
The measured final to instantaneous 
deflection ratio (a365/a28) for the beam 
series "B" (uncracked) amounts to 3.84, 
while it amounts to 2.54 for the beam 
series "C" (cracked). This is not unexpected 
since only the uncracked part of concrete 
is affected by creep and shrinkage [9].
A summary of deviations of the numerically 
and analytically calculated short-term 
and long-term deflections in terms of 
measured data is given in Table 5. The 
results obtained with the simplified code 
procedure based on Branson’s model are 

Figure 9.  Comparison of development of long-term deflections (beam series "B" and "C") 
obtained analytically, numerically, and experimentally
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also presented. Since reference beams have a reinforcement ratio 
of 0.54 %, they are considered in this simplified procedure as lightly 
reinforced elements, and therefore the power m equal to 4 was 
introduced in Eq. (10). The deflections obtained with the power m 
equal to 3 are also presented in Table 5 for comparison purposes.
In Table 5, ao indicates the short-term instantaneous deflection, 
while at is the final long-term deflection after one-year of exposure 
to different magnitude of sustained load. The time-dependent 
deflection caused by creep and shrinkage, denoted as Δat, is equal 
to the difference between the final long-term and instantaneous 
deflection. Table 5 shows that each result is within the allowable 30 
% range of deviation from the experimentally obtained deflections, 
except for the results obtained with the simplified analytical 
procedure proposed in the current codes. The maximum deviation 
of these results occurs at the final long-term deflection of the 
uncracked beams "B", and amounts to 35.11 %. It can be noted that 
better prediction of short-term and long-term deflections is obtained 
with the power m equal to 3 in Eq. (10). The results given in Table 5 
show that each of the applied models overestimates the short-term 
deflections for the beam series "A", while underestimating in almost 
every case the long-term deflections for the beams "B" and "C".

Figure 10.  Effects of creep and shrinkage on the F - a relation after one 
year of sustained load 

The effects of creep and shrinkage on the long-term deflection 
of the analysed beams are illustrated in Figure 10. The grey 

curve shows the short-term deflection immediately after 
application of load. After the considered one year period, this 
curve shifts horizontally and is inclined to the right as a result 
of the simultaneous creep and shrinkage action (black curve). 
The force (F) – deflection (a) relation over time t (black curve) 
shows that the element exhibits an initial deflection (denoted as 
ash

I(t) in Figure 10), even in the case of M = 0 kNm, which is due 
to the effect of shrinkage. Figure 9 also shows a reduction of 
beneficial tension-stiffening effects over time for loads higher 
than the cracking load. As the load increases, this reduction 
becomes more pronounced (Figure 10). 

5.3. Crack pattern

A comparison of the numerically and experimentally obtained 
crack patterns in beams "C" is presented in this section. There 
is still no analytical procedure for obtaining crack locations and 
crack development over the element axis. Figure 10 shows the 
crack pattern at the initial load application time t0 (28 days) and 
at time t (365 days), from which the time-dependent nature 
of cracking can be observed. Some cracks develop through 
the element height over time, but new cracks also appear 
under sustained load, extending the cracking zone towards the 
element supports (Figure 11). 

Series “A” Series “B” Series “C”

FG = 11.60 kN
t0 = 28 days

FG = 4.00 kN
t0 = 365 days

FG+Q/2 = 7.80 kN
t0 = 365 days

a0
[mm]

Δ*

[%] O/U a0
[mm]

Δ*

[%]
at

[mm]
Δ*

[%]
at

**

[mm]
Δ*

[%] O/U a0
[mm]

Δ*

[%]
at

[mm]
Δ*

[%]
at

**

[mm]
Δ*

[%] O/U

Experiment 3.60 - - 0.490 - 1.88 - 1.39 - - 1.925 - 4.88 - 2.95 - -

Numerical 
model

Beam 4.45 23.61 O 0.460 6.12 1.46 22.34 1.00 28.06 U 2.34 21.56 4.84 0.82 2.50 15.40 U

PL St. 3.80 5.56 O 0.463 5.51 1.55 17.55 1.09 21.58 U 1.77 8.05 4.69 3.89 2.92 1.18 U

Analytical model 3.88 7.78 O 0.446 8.98 1.39 26.06 0.94 33.10 U 2.04 5.97 4.57 6.35 2.53 14.38 U

Code procedure (m = 4) 4.63 28.61 O 0.480 2.04 1.22 35.11 0.74 46.76 U 2.32 20.52 5.85 19.88 3.53 21.15 O

Code procedure (m = 3) 4.03 11.94 O 0.480 2.04 1.22 35.11 0.74 46.76 U 1.93 0.26 4.87 0.21 2.94 0.51 U

*Δ = (acalc-aexp)/aexp, **Δat = at-ao, O – Overestimation, U – Underestimation

Table 5. Comparison between calculated and measured instantaneous and long-term deflections for the series of beams A, B and C

Figure 11.  Crack pattern in beam series "C" at the initial t0 and final 
time t
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Unfortunately, Diana 9.4.3 is not able to present the crack 
widths explicitly. That is why crack widths were not compared 
in these investigations. 

6. Conclusion

An analytical and numerical model for prediction of SLS of RC 
flexural members was applied to a reference beam. The results 
obtained with regard to time variation of stresses and strains, 
short and long-term deflections, and crack pattern, were 
compared with the existing experimental data.
Based on the results of comparative study presented in this 
paper, the following conclusions can be drawn:
 - The analytical and numerical model efficiently takes into 

account the creep and shrinkage effects as well as the 
presence of cracking. Numerical models additionally provide 
a visual impression of the crack pattern and an insight into 
local behaviour of the element.

 - The analytically and numerically predicted deflections show 
a reasonably good agreement with experimental data. A 
maximum deviation of 8.98 % for short-term and 26.06 
% for long-term deflections has been observed from the 
analytically obtained results. The results obtained with the 
numerical model with finite beam elements show 23.61 % 

deviation for short-term deflections and 22.34 % for long-
term deflections. By contrast, the results of the numerical 
model with plane stress finite elements show a better 
agreement with experimental data, with 8.05 % and 17.55 % 
for short-term and long-term deflections, respectively. The 
deviations in both models with regard to experimental data 
are within the allowable 30 % range [15].

 - The bigger underestimation of the long-term deflections 
obtained with analytical model is especially due to the crude 
assumption of the loss of tension-stiffening with time, 
introduced only by the coefficient β2 = 0.50 (Eq. (9)). The 
formation of new time-dependent cracks reduces beneficial 
effects of tension-stiffening and consequently affects the 
final value of long-term deflections. These effects should 
therefore be considered in more detail in order to make a 
reliable estimation of long-term deflection values.

 - For the cases usually encountered in engineering practice, 
structural designers most often choose simplified code 
procedures based on Branson’s model for prediction of in-
service deflections. The results obtained in the scope of this 
study show that these procedures mostly underestimate 
actual deflections, pointing to the fact that more refined 
analytical models based on double integration of curvature 
can be recommended, even in simplest practical cases.
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