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Abstract: COVID-19 caused pneumonia is a severe health risk that sometimes leads to fatal outcomes.1

Due to medical care systems’ constraints, technology solutions should be applied to diagnose, monitor,2

and alert the disease progress for patients receiving care at home. Some sleep disturbances such as3

obstructive sleep apnea syndrome can increase the risk for COVID-19 patients. This paper proposes4

an approach to evaluate the patients’ sleep quality, aiming to detect sleep disturbances caused by5

pneumonia and other COVID-19-related pathologies. We describe the non-invasive sensor network6

used for sleep monitoring and evaluate the feasibility of an approach for training a machine learning7

model for detecting possible COVID-19 related sleep disturbances. We also discuss a cloud-based8

approach for the implementation of the proposed system for processing the data streams. Based9

on the preliminary results, we conclude that sleep disturbances are detectable with affordable and10

non-invasive sensors.11
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1. Introduction13

Coronavirus disease (COVID-19) is an acute infectious disease caused by Severe Acute Respiratory14

Syndrome (SARS-CoV) [1]. The authors in [2] reported the discovery of the SARS-CoV-2 to December15

2019 in Wuhan, China. It is sometimes a deadly disease affecting mostly elderly patients and patients16

with specific comorbidities, the most frequent: hypertension, diabetes, severe asthma, respiratory, and17

cardiovascular disease [3,4].18

Tang et al. in [5] report that hospitalized patients mostly have a case of pneumonia, being the19

leading causes of death failures in the respiratory and cardiac systems [6]. Clinical observations20

show that the COVID-19 disease can rapidly progress with a period from hospitalization to death for21

intensive care unit (ICU) patients and non-ICU patients of 15.9 days (standard deviation = 8.8 d) and22

12.5 days (8.6 d, P = 0.044), respectively [6]. The disease can rapidly worsen, leading to respiratory23

failure and acute respiratory distress syndrome (ARDS) that requires intubation [7].24

Due to the medical systems’ capacity constraints in areas where the disease is widely spread,25

supportive care and patient’ monitoring are limited. Early detection of pneumonia development26
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in patients in self-isolation at home could enable medical staff evaluation and timely admission to27

hospital care.28

Patients with medium and severe disease experience deterioration in their well being. Symptoms29

include cough, fever, dyspnea, musculoskeletal symptoms (joint pain, fatigue), and gastrointestinal30

symptoms [8]. Based on our earlier research [9–11], we propose a method for non-invasive monitoring31

of sleep disturbances, as developing pneumonia could affect the person’s breathing and quality of32

sleep. To establish our assumption that at-home patient monitoring, specifically sleep monitoring,33

could detect worsening of the situation of COVID-19 patients or establish if they present a higher34

risk, in this paper, we review the literature for relations between COVID-19 and sleep, as well as the35

technology-aided patient monitoring.36

In the next section, we provide a review of the literature on the relation between COVID-19 and37

its effect on sleep and technology-aided patient monitoring. In section 3, we describe our scenario for38

non-invasive sleep monitoring, and Section 3.2 proposes a cloud-based approach for sleep disturbance39

detection. The following section outlines the process for building a machine learning (ML) model40

to detect sleep disturbances that might indicate underlying COVID-19 issues. The results from the41

experiment are presented in 4. We discuss our findings and future work in section 5, and conclude the42

paper in 6.43

2. Related work44

To establish our assumption that at-home patient monitoring, specifically sleep monitoring, could45

detect worsening of the situation of COVID-19 patients or establish if they present a higher risk,46

in this section, we review the literature for relations between COVID-19 and sleep, as well as the47

technology-aided patient monitoring.48

2.1. COVID-19 and sleep disturbances49

COVID-19 associated ARDS imposes hypoxia [12], which is an indication of the development of50

more progressive pneumonia. Patients with hypoxia require urgent medical attention. Smartphone51

pulse oximetry has been used to detect hypoxia. While pulse oximetry is a direct way to detect hypoxia52

[13], it has the limitations that the patient must adequately use and know how to take measurements.53

It is also challenging to ensure that a person can keep the pulse oximeter attached to their finger during54

sleep. Due to lack of oxygen saturation, hypoxia causes sleep disturbance [14]. Sleep monitoring can55

thus detect potential hypoxia. While false positives from other causes affecting sleep are possible, a56

further pulse oximetry measurement by the patient or another caregiver can be used for confirmation.57

Another aspect of how sleep monitoring could benefit from accessing risk factors for COVID-1958

patients is by observing comorbidities’ effects. McEvoy [15] shows that overnight oxygen deprivation59

caused by obstructive sleep apnea syndrome is a strong predictor of hypertension. Therefore by60

extension, obstructive sleep apnea syndrome (OSA) is an indicator of at least one risk factor for61

COVID-19 patients.62

Yi-Fong Su et al. [16] have observed 34,100 patients, of which 2,757 patients had pneumonia63

during a mean follow-up period of 4.5 years. This study has shown that patients with obstructive64

sleep apnea syndrome experience a 1.20 fold increase in incident pneumonia. Thus, obstructive sleep65

apnea syndrome appears to confer a higher risk for future pneumonia. We have not found a similar66

study specifically for COVID-19 patients; however, Pazarli et al. [17] postulate that OSA may be a risk67

factor for mortality or deteriorate the clinical scenario in COVID-19 McSharry et al. [18] suspect OSA68

could potentially contribute to worsening hypoxemia and the cytokine storm that occurs in COVID-1969

patients. Our approach for detecting obstructive sleep apnea syndrome symptoms could benefit in the70

diagnosis of this risk factor.71

Patients with pneumonia, which are not on mechanical ventilation, are usually positioned so that72

the affected areas of lungs are on top [19]. In [9], we have shown that non-invasive sensors could be73

used to recognize motions in bed, including turning in bed from lying on the back to laying on the74
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side. Detecting such movements could alert the caregiver to monitor the care receiver and, if needed,75

change their body position.76

2.2. Technology-aided patient monitoring77

Improvements in healthcare combined with an aging population with a greater need for health78

services provide a strain of hospitals and medical staff that not always scale with the needed capacity.79

This effect has been partially lesser by reducing inpatient hospital length of stay for some patients80

[20,21]. On the other hand, the tendency to reduce the length of stay in hospitals, also reducing81

exposure to hospital-acquired diseases, has created a need for at-home patient monitoring and care.82

Active monitoring of patients in home settings can improve adherence for patients receiving care at83

home [22].84

Patient monitoring is a growing field of research, and various designs and systems have been85

proposed. A comprehensive review of remote patient monitoring was conducted in [23]. This study86

focuses on four categories, one of which is cardiovascular and respiratory-related diseases. The review87

shows that this technology is making an impact on society and the research community. The authors88

note that although researchers prefer to move towards contactless methods, there are still significant89

problems to be solved in contactless monitoring. These problems include adapting the system for90

different users and removing artifacts and noise from the contactless sensors. Vegesna et al. [24] have91

conducted a systematic review of remote patient monitoring using non-invasive technologies. This92

study shows that most systems use multiple components, and smartphones are often involved.93

A collaborative healthcare system (COHESY) model is described in [25]. This model has a94

bio-network layer for collecting sensor data, a social layer, and a layer for interoperability with95

healthcare information systems. This system addresses data security issues such as authentication,96

privacy, data storage, transmission, and confidentiality.97

A system for unobtrusive monitoring for sleep and respiration was proposed in [26]. According98

to the researchers, the system that uses a thin strip pressure sensor to measure the care receiver sleep99

efficiency and respiration rate has an accuracy similar to that of existing FDA approved sleep trackers.100

Two sensors were used in this study, the first one uses the piezoelectric effect, and the second is a101

force-sensing resistor. Once the analog signals are converted to digital, they are sent via Bluetooth to a102

smartphone and onward to an Internet server.103

Another approach for obstructive sleep apnea syndrome monitoring and detection is through104

nocturnal pulse oximetry. This approach was studied in [27], where the authors showed an accuracy105

of the diagnosis of 96.7%. While the study was done in a hospital setting, the paper shows potential106

for home-based use of connected pulse-oximetry.107

While pulse-oximetry provides a more accurate diagnosis for obstructive sleep apnea syndrome,108

there are many challenges with training care receivers to properly put on the device and consistently109

do that before sleep. Wearable devices can also fall off or cause discomfort to the patient. Given these110

downsides, and unobtrusive monitoring, using devices that require little or no human intervention111

can be a more consistent way to measure sleep patterns and sleep disturbances.112

3. Methods113

Our proposed solution consists of non-invasive sensors. We utilize two types of sensors, a114

piezoelectric sensor and PIR sensors. Other data sources, including patient input and digital medical115

records, are also introduced to the system. We present a cloud-based architecture to support the care116

receivers and care providers.117

3.1. Sensor kit with non-invasive sensors for sleep monitoring118

Noninvasive sensors can detect body or leg movements. According to [28], these movements are119

related to obstructive sleep apnea syndrome. Thus, we propose placing piezoelectric sensors under120

a mattress, as presented in figure 1. In this figure, a piezoelectric element is placed between two121
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plates. The piezoelectric element generates a charge, which is amplified by a charge amplifier circuit122

transmitted via a wall connector to the central panel. The plates are used to amplify the movement of123

a person in the bed. This sensor’s signal is then amplified using a circuit with the schematic shown in124

figure 10.125

Figure 1. Piezoelectric based bed movement sensor under mattress

Other sensors are also used, such as a passive infrared (PIR) sensor module [9] placed above126

the bed, as shown in figure 2. These sensors are placed in a sensor case to provide the experiment’s127

repeatability with a predetermined angle. It was used to detect events, including movements in the128

bed readable by under-mattress sensors.129

Figure 2. Sensor module with PIR sensors

3.2. Cloud-based architecture130

To support this study’s goals, we propose a cloud-based solution that integrates data from131

various sources. The cloud infrastructure can also facilitate scalability with the resource demand132

and cost-optimization and simplify deployments to other locations. However, the module for data133

collection and basic processing should be implemented on edge [10].134
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The process for machine learning is presented in figure 3. The inputs to the system are sensor135

data, patient log, patient record, and medical questionnaire. The sensor data collection is elaborated136

in section 3.1. The patient log consists of self-reporting of measurable health parameters such as137

body temperature and pulse-oximetry. The patient record refers to the medical history of the patient,138

including any respiratory or sleep diseases. The questionnaire is filled by the patient, preferably using139

the web interface or smartphone app. The questions refer to health status that cannot directly be140

measured and are thus subjective. Typical questions would include qualifying the person’s sleep and a141

symptom chart for common COVID-19 symptoms such as loss of smell and dry cough. The data is142

pre-processed on edge and then sent to the cloud. A medical professional can provide their diagnosis143

and input additional parameters. They could also request an examination by directly making an144

appointment with the patient or requesting manual measurements (pulse oximetry, blood pressure,145

temperature) using connected devices or manual input.146

As the non-invasive sensors are not making direct measurements, their placement affects how147

the events are registered. This effect introduces challenges in generating ML models from multiple148

care receivers. However, when multiple sensors of the same type are used, the data difference and a149

temporal difference for the same sensor can be introduced as features in the model. The measured150

features should be invariant to amplitude or time-shifting, uniform amplification, additive noise,151

and time scaling transformations [29]. A reliable method for sleep disturbance recognition requires152

continuous monitoring of the application performance.153

All input parameters create a feature set for the machine learning training that is performed in154

the cloud. The output of this process is the ML model that is then deployed to the healthcare gateway.155

For subsequent data received by the healthcare gateway, it can run the model and take actions when156

the output indicates worsening of the patient’s well-being or pre-existing health risk is detected. The157

actions include alerting the medical providers or adding suspected events to the medical record.158

Figure 3. Machine learning features and model

Figure 4 presents the data flow model used to detect sleep disturbance using non-invasive sensors159

(PIR module and piezoelectric sensor), collecting the sensor readings from multiple care recipients.160
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The sensors can have direct wireless Internet connectivity and upload information directly to the cloud161

in a scenario where cost savings are the priority. However, utilizing the healthcare gateway, an edge162

device is preferable to offload initial data processing and enable faster scaling.163

Figure 4. Communication framework

4. Results164

The sampling rate was set to 33 Hz, providing a reading of 5 PIR sensors and 1 Piezo sensor every165

30 milliseconds. The different experiments for the monitoring of sleep patterns were performed for166

over 8 hours. The PIR sensors are binary, and in the data set, they can have zero or one value. The167

piezoelectric sensor is analog input with voltage from zero to five volts represented as zero to 1000.168

For the analysis, we normalized this range between zero and one. The input range was less than the169

five volts due to signal noise and voltage drop from the amplifier circuit. The summary of the sensor170

data input is shown in Table 1. Here we notice that PIR1 and PIR5 that were facing away from the171

subject have a low activation rate compared to the other sensors.172

Table 1. Summary of sensor readings

Sensor Min Mean Max

Piezo 37 52.03 736
Piezo (normalized) 0 0.021503 1
PIR1 0 0.009828 1
PIR2 0 0.028537 1
PIR3 0 0.029203 1
PIR4 0 0.030796 1
PIR5 0 0.018591 1

Figure 5 shows the correlation between the different PIR sensors and the piezo sensor. It is quite173

interesting that all of them are significantly correlated.174

Suppose we consider the built-in delay in the PIR sensors and the highly oscillating output175

of the piezoelectric sensor, reducing the correlation. In that case, the calculated correlation is very176

promising. Post-processing of the data can partially eliminate these factors. The delay of PIR sensors177

can be reduced by eliminating successive positive values in the time series. The piezoelectric signal178

oscillations can be ironed out using the sliding window method and then normalizing each event.179

Figure 6 shows the heat map where the piezoelectric data was averaged using a sliding window of180

100 samples or 3.3 sec. We notice a very high correlation of up to 0.73 between the piezo sensor and181
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Figure 5. Correlation heatmap of the Piezo and PIR sensors

the second PIR sensor. Given that the maximal correlation among the PIR sensors is 0.83, this result182

confirms that sensors can confidently detect movement in bed.183
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Figure 6. Correlation heatmap of the PIR sensors and Piezo with sliding window

To explore the data in greater detail, in Figure 7 we visualize the entire sleep interval. As we have184

close to a million data points for each sensor, we average each 30-second interval. Since the sampled185

data is mostly zero value, we normalize the data. Each line represents 30 seconds in the figure, and the186
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vertical length of the line represents the normalized average for that interval. It can be observed that187

most events detected by the piezoelectric sensor are detected by at least a few of the PIR sensors.188

Figure 7. PIR and Piezo sensors activation (over 8 hours of sleep)

In figures 8 and 9, we present a heat-map of the sensors for the first and the last 40 minutes of189

the sleep interval. A rolling window was used to average the signal, especially from the piezoelectric190

sensor. We notice that PIR2, PIR3, and PIR4 are activated even for weaker signals from the piezo sensor.191

These sensors face the person at an angle with higher sensitivity. When this signal is stronger, which192

corresponds with more pronounced body movement, even the PIR1 and PIR5 sensors are activated.193
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Figure 8. PIR and Piezo sensors activation (the first 40 minutes of the 8 hours of sleep)

We can conclude that noninvasive sensors are likely to register movements during sleep, as194

indicated by the high correlation. After labeling data using body sensors, the model would process195

and react only to noninvasive sensors.196
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Figure 9. PIR and Piezo sensors activation (the last 40 minutes of the 8 hours of sleep)

5. Discussion197

The proposed non-invasive sleep monitoring cannot directly be used for COVID-19 diagnosis198

and is not a replacement for professional hospital monitoring for critically ill patients. However, in199

situations where the patients are at home, our system can be easily placed in the bedroom to monitor200

if the patient situation has increased probability to worsen, affecting their sleep. Our approach can201

gather some of the data points needed to investigate further the effect of COVID-19 symptoms and202

how they affect sleep. However, clinical observation is also needed to precisely monitor the progress203

of the illness in patients and as a feedback loop to validate the hypothesis that COVID-19 symptoms204

affect sleep. A machine learning approach is a good fit for this type of analysis, given the amount of205

sensor data generated.206

Our system can also be used as an indication of potential risk factors, such as obstructive sleep207

apnea syndrome. In the related work, we have presented research indicating the correlation between208

sleep disturbances and known effects in patients with COVID-19. A significant association between209

obstructive sleep apnea syndrome and COVID-19 death was found in [30]. This finding persisted210

when data were adjusted for demographics. The authors highlight the need for close monitoring of211

persons with infection that suffer from obstructive sleep apnea syndrome. The hypoxia associated with212

OSA will significantly affect patients with pneumonia and shortness of breath. The frequent periods of213

awakening during sleep result in sleep deprivation and poor sleep quality associated with suppression214

in immune response, which can facilitate susceptibility to SARS-CoV-2 infection [31]. OSA was215

associated with an increased risk of hospitalization and approximately doubled the risk of developing216

respiratory failure [32]. Given these risk factors and knowing that OSA is widely under-diagnosed217

[32], our approach can provide additional information for care providers to investigate and assess the218

patient’s risk.219

The strong correlation between the PIR sensors and the piezoelectric sensors with entirely220

different measuring methods confirms the validity of the sensor fusion approach in unobtrusive221

patient monitoring. In order to reduce signal noise, additional sensors of the same or different types222

can be added.223

Another application that our non-invasive sleep monitoring approach could benefit is the224

long-term home care monitoring of patients who survived the acute respiratory distress syndrome225

(ARDS) and recovered after mechanical ventilation. Prior research has shown that sleep disturbance226

can increase in post-recovery ARDS patients compared to the general population [33,34]. Lee et al.227

[33] have followed a large group of patients who have survived critical illness associated with ARDS228

and have concluded that chronic sleep disorders, which originate during the acute illness, are present229

in some ARDS survivors several months after discharge from the hospital. Based on their study and230

research of literature, Doria et al. [34] have found that by median percentage, 67% of patients in231

early-stage and 39% in late-stage after discharge experience abnormal sleep.232

An additional benefit of using our approach is to assist in the monitoring of patients with233

sleep disorders. Many sleep disorders centers were entirely closed during the Covid-19 pandemic234
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either because they are situated in the hospital buildings or because the staff was re-tasked with235

COVID-19 care [35]. While therapy for obstructive sleep apnea syndrome using PAP devices is usually236

administered at home, sleep monitoring is done in these centers. Given the increased limitations and237

restrictions, the role of telemedicine for sleep disorders should be prioritized in the era of COVID-19238

[36].239

6. Conclusion240

In this paper, we showed the links between COVID-19 symptoms and sleep disturbances. We241

presented a system consisting of multiple sensors of two types to monitor sleep quality and issues.242

Our experimental data showed a strong correlation between diverse types of sensors that detect243

movements during sleep. We discussed the relations found in the literature between movements in244

sleep and sleep quality and sleep disturbances. The monitoring of sleep and sleep disturbances, in245

turn, can indicate the existence of COVID-19 symptoms, including pneumonia and possible COVID-19246

risk factors such as obstructive sleep apnea syndrome. Our approach can also be used as alternative247

home-based sleep monitoring when the patient cannot receive specialized monitoring in sleep centers248

due to the pandemic restrictions. In the future, we will collect data across multiple persons and various249

configurations of noninvasive sensors’ placement.250

7. Supplementary material251

Figure 10. Amplifier circuit for piezoelectric sensor
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Abbreviations268

The following abbreviations are used in this manuscript:269

270

COVID-19 Corona virus disease 2019
SARS-CoV-2 Severe acute respiratory syndrome - coronavirus 2
ARDS Acute respiratory distress syndrome

271

References272

1. Pires, I.M. A review on Diagnosis and Treatment methods for coronavirus disease with sensors. 2020273

International Conference on Decision Aid Sciences and Application (DASA). IEEE, 2020.274

2. Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; others. On the275

origin and continuing evolution of SARS-CoV-2. National Science Review 2020.276

3. Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello,277

A.; Foti, G.; Fumagalli, R.; others. Baseline characteristics and outcomes of 1591 patients infected with278

SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama 2020, 323, 1574–1581.279

4. Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.;280

Evans, D.; Inglesby, P.; others. Factors associated with COVID-19-related death using OpenSAFELY. Nature281

2020, 584, 430–436.282

5. Weiss, P.; Murdoch, D.R. Clinical course and mortality risk of severe COVID-19. The Lancet 2020,283

395, 1014–1015.284

6. Du, R.H.; Liu, L.M.; Yin, W.; Wang, W.; Guan, L.L.; Yuan, M.L.; Li, Y.L.; Hu, Y.; Li, X.Y.; Sun, B.; others.285

Hospitalization and critical care of 109 decedents with COVID-19 pneumonia in Wuhan, China. Annals of286

the American Thoracic Society 2020.287

7. Goh, K.J.; Kalimuddin, S.; Chan, K.S. Rapid progression to acute respiratory distress syndrome: review of288

current understanding of critical illness from coronavirus disease 2019 (COVID-19) infection. Ann Acad289

Med Singapore 2020, 49, 108–18.290

8. Carfì, A.; Bernabei, R.; Landi, F.; others. Persistent symptoms in patients after acute COVID-19. Jama 2020,291

324, 603–605.292

9. Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Trajkovik, V. Towards application of non-invasive293

environmental sensors for risks and activity detection. 2016 IEEE 12th International Conference on294

Intelligent Computer Communication and Processing (ICCP). IEEE, 2016, pp. 27–33.295

10. Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Goleva, R.; Koceski, S.; Trajkovik, V. Fog Computing for296

Personal Health Principles. Proceedings/8 th International conference on applied internet and information297

technologies, 2018, Vol. 8, pp. 109–114.298

11. Dimitrievski, A.; Savoska, S.; Trajkovikj, V. Fog Computing for Personal Health: Case Study for Sleep299

Apnea Detection. The 13-th conference on Information Systems and Grid Technologie, 2020.300

12. Kashani, K.B. Hypoxia in COVID-19: Sign of Severity or Cause for Poor Outcomes. Mayo Clinic301

Proceedings. Mayo Foundation for Medical Education and Research, 2020, Vol. 95, pp. 1094–1096.302

13. Teo, J. Early Detection of Silent Hypoxia in Covid-19 Pneumonia Using Smartphone Pulse Oximetry.303

Journal of medical systems 2020, 44, 1–2.304

14. Mizuno, K.; Asano, K.; Okudaira, N. Sleep and respiration under acute hypobaric hypoxia. The Japanese305

journal of physiology 1993, 43, 161–175.306

15. McEvoy, R.D. Obstructive sleep apnoea and hypertension: the ESADA study, 2014.307

16. Su, V.Y.F.; Liu, C.J.; Wang, H.K.; Wu, L.A.; Chang, S.C.; Perng, D.W.; Su, W.J.; Chen, Y.M.; Lin, E.Y.H.;308

Chen, T.J.; others. Sleep apnea and risk of pneumonia: a nationwide population-based study. Cmaj 2014,309

186, 415–421.310
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