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Abstract. In view of the current availability and variety of measured
data, there is an increasing demand for powerful signal processing tools
that can cope successfully with the associated problems that often arise
when data are being analysed. In practice many of the data-generating
systems are not only time-variable, but also influenced by neighbouring
systems and subject to random fluctuations (noise) from their environ-
ments. To encompass problems of this kind, we present a tutorial about
the dynamical Bayesian inference of time-evolving coupled systems in
the presence of noise. It includes the necessary theoretical description
and the algorithms for its implementation. For general programming
purposes, a pseudocode description is also given. Examples based on
coupled phase and limit-cycle oscillators illustrate the salient features
of phase dynamics inference. State domain inference is illustrated with
an example of coupled chaotic oscillators. The applicability of the latter
example to secure communications based on the modulation of coupling
functions is outlined. MatLab codes for implementation of the method,
as well as for the explicit examples, accompany the tutorial.

1 Introduction

Science can be defined as the systematic observation and analysis of nature, and of
how natural processes evolve in time and space. Typically, science tries to generate
models based on data collected over some specified time interval – one that depends
on how fast the processes occur, which may be over e.g. centuries or seconds or
microseconds. The data are usually measured in streams, and they are analyzed in
sequential blocks. Depending on the dynamical characteristics, different methods of
data analysis may be suitable, including for example Bayesian methods, Kalman
filters, particle filters and maximum likelihood estimators [1–6].
The Kalman filter represents a major milestone in the history of such algorithms.

It provides a way of predicting a particle’s motion, given a noisy data stream rep-
resenting its position. The algorithm is named after Rudolf E. Kalman [7] who, in
the sixties, brought it to the attention of the NASA researchers facing the challenges
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raised by the Apollo space program. Although based on linear functions, the Kalman
filter was an immediate success. The method has been much improved over the last
decades, including the introduction of non-linear Kalman filters [8].
Another important class of sequential data analysis methods is those based on

Bayesian theory [9]. They exploit Bayes’ theorem to make use of prior knowledge
in estimating the current or posterior model parameters. In this way, the Bayesian
methods use the evolution of acquired knowledge to accomplish improved inference.
This review is focused on some recent developments and advances in this rapidly
evolving area, based on Bayesian methods [1,10–12].
There are many different ways in which Bayes’ theorem may be applied, and differ-

ent groups of methods exist for performing so-called “Bayesian inference” [3,4,12–15].
Of particular interest among these are the Bayesian methods for dynamical inference.
They enable a dynamical model in terms of ordinary or stochastic differential equa-
tions to be inferred from the observed data. Dynamical Bayesian methods provide
the basis for important signal processing techniques that have been applied to e.g.
physics, biology, communications, and climate [3,11,12,14].
A great advantage of these Bayesian methods is their ability to infer dynam-

ics when the system under consideration is not isolated, but is influenced by its
environment and other processes to which it may be weakly coupled [16–19]. One
manifestation of such external influence occurs when the underlying dynamical sys-
tems are subject to noise, and it has already been studied in detail theoretically
[1,10,12,20–22]. When dealing with data from natural systems one should allow for
the possibility of the dynamics being time-varying. In such cases, the Bayesian method
[1,10] published recently is of particular interest: it can identify time-varying dynam-
ics even in the presence of noise, and it is able to follow the time-evolution of the
parameters. It is the latter method that provides the main focus of this tutorial.
The method can be applied to various types of dynamical system. In what follows,

however, we will focus our attention on coupled oscillatory dynamical systems. The
latter frequently arise in physiology and include, for example, the cardio-respiratory
or neuronal systems [23–26] which are, in fact, coupled dynamical systems with time-
varying parameters that are subject to external noise. In that context, one might
be interested in e.g. detecting causal interactions and the directionality of influence
[27–30], or in coherence and synchronization [11,31–33]. Of special interest is the
recently developed detection and description of interactions in terms of coupling
functions [1,6,34]. Dynamical Bayesian inference has already been used to investi-
gate how the cardiorespiratory coupling functions are affected by aging [35]. The
same method has also been applied in a quite different context, namely, to facilitate
the use of inter-oscillator coupling functions to improve the security of communica-
tions systems [11].
In the tutorial presented below, we discuss the practicalities of how this partic-

ular Bayesian method can be implemented, including the algorithms, programming
and applications. The problems and phenomena that were originally treated by the
method [1,10,12,21,22] were relatively complex and had to be presented in a rather
compressed format. Given that the tutorial is intended for a wider audience, we adopt
here a different presentation style using examples that are simple and an exposition
that is quite detailed. The tutorial is organized as follows. First, we start by summaris-
ing the background and basics of Bayesian probability as proposed by Thomas Bayes,
the originator of this inference approach. Then in Sect. 3 we introduce the theoretical
terms needed for the implementation of dynamical Bayesian inference. The algorithms
and the programming description are given in Sect. 4. Applications of the method to
three examples are discussed in Sect. 5. The first of these uses coupled phase oscilla-
tors to present the basics of the inference of time-evolving phase dynamics in the
presence of noise. The second example uses coupled limit-cycle oscillators, also
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describing the reconstruction and detection of synchronization and coupling func-
tions. The third and final example discusses the inference of coupled chaotic systems
in state space, as an implementation of the secure encryption technique. Finally, in
Sect. 6, we discus possible generalizations of the method, consider the implications for
other areas, point out the relationships to other methods, and offer some concluding
remarks.

2 The legacy of Thomas Bayes (1701–1761)

It was fortunate for Thomas Bayes’ legacy that his friend Richard Price significantly
edited and updated his work, and read it posthumously to the Royal Society on his
behalf in 1763.
It was published in Philosophical Transactions of the Royal Society of London the

following year. The ideas gained only limited exposure until they were independently
rediscovered and further developed by Laplace, who first published their modern
formulation in his 1812 Théorie analytique des probabilités.
The classical approach to statistics defines the probability of an event as “The

number of times the event occurs over the total number of trials, in the limit of an
infinite series of equiprobable repetitions”. Many of the limitations inherent in this
definition can be avoided, and paradoxes resolved, by taking a Bayesian stance about
probabilities. Bayes defines probability as:

“The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed,
and the value of the thing expected upon its happening.”

However even Bayes himself might not have embraced the broad interpretation now
referred to as Bayesian. It is difficult to assess Bayes’ philosophical views on proba-
bility, because his work does not go into questions of interpretation.
Today Bayesian probability is used to describe several different, but related, in-

terpretations of probability. To evaluate the probability of a hypothesis, Bayesian
probability specifies some prior probability, which is then updated in the light of
new, relevant data. “Bayesian” has been used in this sense since the rebirth of Bayes’
ideas in the 20th century. Advances in computer technology have allowed scientists
from many disciplines to extend the approach and to apply it in diverse fields. Sir
Harold Jeffreys, who wrote the book Theory of Probability, which first appeared in
1939, played an important role in the revival of the Bayesian view of probability. He
wrote that Bayes’ theorem “is to the theory of probability what Pythagoras’s theorem
is to geometry”.
So what exactly is Bayes’ theorem? Scientific hypotheses are typically expressed

through probability distributions for observable data X which depend on the model
parametersM. In the Bayesian framework, current knowledge about the model pa-
rameters is expressed by placing a probability distribution on the parameters, called
the “prior distribution”, often written as pprior(M). When new data X become avail-
able, the information they contain regarding the model parameters is expressed in
the “likelihood,” which is proportional to the conditional distribution of the observed
data given the model parameters �(X|M). This information is then combined with
the prior to produce an updated probability distribution called the “posterior dis-
tribution,” on which all Bayesian inference is based. Bayes’ theorem, an elementary
identity in probability theory, states how the update is done mathematically – the
posterior is proportional to the prior times the likelihood, over the whole available
parameter space:

pX (M|X ) = �(X|M)pprior(M)∫
�(X|M) pprior(M)dM· (1)
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From this point of view, the task to be faced in Bayesian analysis is to construct
and evaluate the likelihood function, given that the data and the prior knowledge are
available.
This single line of Bayes’ theorem appears simple, but has a rather profound

meaning. It gives one a means of reversing the problem of inference – starting from
observations to get back to the nature of the causation. Even better for practical
applications is that it works with probabilities, expressing “beliefs” or the level of
how likely something is to happen. It is a powerful method that provides natural
ways for people in many disciplines to structure their data and knowledge, and to
yield direct and intuitive answers to their practical questions.
Today, Bayesian theory enjoys wide interpretation and application over most of

science and experimental areas quite generally. Since Bayes first propounded his
ideas, there have been huge developments in both the theory and applications. The
latter span practically every aspect of science, including particle physics, astrophysics,
cosmology, geophysics, communications, pharmacology and medical and biological
physics [1,3,4,11–13,36,37]. There are entire societies, such as the International
Society for Bayesian Analysis (ISBA), special conferences are organized on Bayesian
analysis, and there exist numerous journals specialized in Bayesian theory and analy-
sis. Given the current level of activity in the field, Bayesian inference promises to
become even more useful and involved in solving the great scientific and everyday
problems faced by humanity.

3 Dynamical Bayesian inference

In the present context, dynamical inference refers to a procedure for inferring a model
in terms of differential equations based on the analysis of a time-series. The method
resembles Feynman’s path integral (which is itself based on a Wiener process), whose
central idea is that, for the motion of a particle between two points in space, all
possible connecting trajectories should be considered and a probability amplitude
assigned to each one of them. This path integral gives the likelihood of observation of
a dynamical trajectory for a given set of distributions of the model parameters. Once
the actual dynamical trajectory is measured in the experiment, the distributions for
the set of model parameters can be improved by use of Bayes’ theorem. The other
main feature, characteristic of the method, is that the Bayesian framework is applied
to a model whose deterministic part is allowed to be time-varying.
The aim is to provide a method that can infer a model of two (or more) weakly-

interacting systems subject to noise:

χ̇i = f(χi,χj |c) +
√
Eξi, (2)

where i �= j = 1, 2, and f(χi,χj |c) is a vector of functions representing the deter-
ministic part of the internal and the interacting dynamics. The vector c denotes the
parameters of the model. The dynamical noise is assumed to be white, Gaussian, and
parameterized by a noise diffusion matrix (E 2 × 2): 〈ξi(t)ξj(τ)〉 = δ(t − τ)Eij . By√
E we indicate the Cholewsky decomposition of E. In what follows we exploit the
Bayesian method presented in [1,10,12,21,22], and the readers interested in additional
theoretical details are directed to those papers and to the references therein.
At this point we speak of χi in general, but later we will refer separately to the

phase or state domain, depending on the type of data that we are inferring. When
we apply the method to analyze different systems, the base functions are the only
thing that will change in the inferential framework. Here, we will use polynomial base
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functions for the state domain, while for the phase domain we will decompose the
dynamics into Fourier components:

φ̇i =

K∑

k=−K
c
(i)
k φi,k(φi,φj) +

√
Eξi, (3)

where Φ1,0 = Φ2,0 = 1, c
(i)
0 = ωi are the respective frequencies, and the rest of the

Φi,k and c
(i)
k are the K most important Fourier components serving as base functions.

Given that 2 × N time-series X = {χn ≡ χ(tn)} (tn = nh) are provided, and
assuming that the model base functions are known, the main task for dynamical
Bayesian inference [12,21] is to infer the unknown model parameters and the noise
diffusion matrixM = {c,E}. The problem eventually reduces to maximization of the
posterior conditional probability pX (M|X ) of observing the parametersM, given the
data X . The relationship of the posterior probability pX (M|X ) to the prior distri-
bution pprior(M) and the likelihood function �(X|M) is defined by Bayes’ theorem,
given above as (1). The maximization of the posterior probability is a difficult task
in its own right but we will see below how, with a parameterization of the model, we
can obtain a posterior probability density that is easily maximized.
The prior distribution, enclosing previous knowledge of the unknown parameters

based on observations, is assumed to be known. The task is therefore to determine
the likelihood functions in order to infer the final posterior result. If the sampling h
is small enough, using the acquired time-series one can construct the Euler midpoint
approximation of Eqs. (2):

χi,n+1 = χi,n + hf(χ
∗
i,n,χ

∗
j,n|c) + h

√
Ezn, (4)

where χ∗n = (χn+1 + χn)/2 and zn is the stochastic integral of the noise term over
time: zn ≡

∫ tn+1
tn

z(t) dt =
√
hH ξn for the H matrix that satisfies the Cholesky

decomposition HHT = E. The parameters c act as a scale coefficients for the base
functions P(χi,χj): f(χi,χj |c) = cP(χi,χj). The idea here is to let P(χi,χj) be
arbitrary and non-linear with respect to the dynamical variables, while assuming that
the function f can be linearly parameterized with respect to the vector of parameters
c. Use of the stochastic integral for noise that is white and independent leads to a
likelihood function that is given by the product over n of the probability of observing
χn+1 at each time. The negative log-likelihood function is then S = − ln �(X|M)
given as:

S =
N

2
ln |E|+ h

2

N−1∑

n=0

(
c
∂P(χ·,n)
∂χ

+ [χ̇n − cP(χ∗·,n)]T (E−1)[χ̇n − cP(χ∗·,n)]
)
, (5)

where χ̇n = (χn+1 − χn)/h and the dot index in χ·,n represents the appropriate
(i or j in this case) index. The likelihood (5) is of quadratic form and, if the prior
is a multivariate normal distribution, so also will be the posterior. Given such a
distribution as a prior for the parameters c, with mean c̄, and covariance matrix
Σprior (or its inverse, known as the concentration matrix Ξprior ≡ Σ−1prior), the final
stationary point of S is calculated recursively from the following four equations:

(a) the noise matrix E

E =
h

N

(
χ̇− cP(χ∗·,n)

) (
χ̇n − cP(χ∗·,n)

)T
, (6)

(b) the concentration matrix Ξ

Ξ = Ξprior + hP(χ
∗
·,n)

T (E−1)P(χ∗·,n), (7)
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(c) a temporary matrix variable r

r = Ξprior c+ hP(χ
∗
·,n) (E

−1) χ̇n −
h

2
v(χ∗·,n), (8)

where the components of matrix v are the partial derivatives of the base
functions
v(χ∗·,n) =

∂P(χ∗·,n)
∂χ·

,

(d) and the final parameters c
c = Ξ−1r, (9)

where summation over n = 1, . . . , N is assumed. The first initial prior can be set as
a non-informative flat normal distribution, Ξprior = 0 and c̄prior = 0.
By evaluating the four equations (6)-(9) using the readout time series X , one can

calculate effectively the multivariate probability NX (c|, c̄,Ξ) which explicitly defines
the probability density of each parameter set of the dynamical system.
The inference method needs to follow the time-evolution of the parameter set c

while separating dynamical effects from the noise. In order to achieve this, we modify
the propagation procedure between the covariance of the current posterior Σnpost and

the next prior Σn+1prior [1]. The definite matrix Σdiff is introduced in order to show
how much each parameter diffuses normally. Thus, the next prior probability of the
parameters is the convolution of two current normal multivariate distributions, Σpost
and Σdiff: Σ

n+1
prior = Σ

n
post + Σ

n
diff. To avoid propagation in the assumptions about

correlation between parameters, we consider Σdiff to be diagonal (ρij = δij in [1]).
We assume each standard deviation σi to be a known fraction of the relevant standard
deviation from the posterior covariance (or parameters) σi = pw(σ

n
post)i, where pw is

a constant parameter. In practice this means that Σdiff has zero values everywhere,
except for the diagonal values, which are a fraction of the diagonal values of the
posterior Σpost.

4 Algorithms and programming

In this section we discuss the algorithmic and programming details needed for the
implementation. We start by presenting what is arguably the most complicated part
– the algorithm for dynamical Bayesian inference applied within a single window
of readout data. The algorithm employing recursion using the Eqs. (6)–(9) can be
summarized in terms of the following steps:

i) the algorithm starts from a cprior and Ξprior,
ii) noise matrix Enew is calculated using Eq. (6),
iii) Ξnew is calculated using Eq. (7),
iv) r is calculated using Eq. (8),
v) cnew is calculated using Eq. (9),
vi) then again to point ii) using cnew as c.

The stopping rule is that “convergence” has been reached i.e. when further iteration
of the algorithm would not modify c and Ξ any more. For example, we used the con-
dition:

∑
(cold − cnew)2/c2new < ε where ε is some very small constant. Because the

problem is parabolic, this convergence is very fast – typically a few cycles. The initial
prior distribution is assumed to be a noninformative “flat” distribution, representing
the initial limit of an infinitely large normal distribution, and obtained by setting
Ξprior = 0 and cprior = 0.
For general programming purposes, we now outline an informal pseudo-code de-

scription of the main algorithms and sub-algorithms. Comments are presented in grey.
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First we describe the algorithm for Bayesian inference:

Algorithm 1: Bayesian inference

\\calculate temporary variables beforehand
– calculate P
– calculate v

cpt = cpr
FOR lp=1:MaxLoops \\main recursive loop
– calculate E
– calculate cpt
IF SUM((cpr − cpt)2/c2pt) <SmallError
RETURN
ENDIF
cpr = cpt

ENDFOR

The sub-algorithms “calculate P” and “calculate v” depend on the particular base
functions and their partial derivatives. These two functions depend on the specific
model to be inferred, and they are the only part needing change if one selects a dif-
ferent model for the inference. The sub-algorithms only involve the simple evaluation
of base functions in respect of the χ∗ time series, and will not be discussed in detail.
The other main calculations are performed within “calculate E” and “calculate cpt”,
which are discussed in detail below.

Algorithm 2: calculate E \\use of Eq. (6)

E = E+(χ̇-P*c)*(transpose of (χ̇-P*c))
E = h/N*E

Finally, the algorithm for calculation of the parameters used in the main recursive
loop is expressed as:

Algorithm 3: calculate c
invE = inverse of E

\\calculate Ξ, Eq. (7)
FOR i=1:l
FOR j=1:l
Ξpt((i− 1) ·K + 1 TO i ·K, (j − 1) ·K + 1 TO j ·K) =
Ξpr((i−1) ·K+1 TO i ·K, (j−1) ·K+1 TO j ·K)+h*invE(i, j)*P*(transpose

of P)
ENDFOR

ENDFOR

\\calculate r, Eq. (8)
ED=invE*χ̇
FOR i=1:l
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FOR j=1:l
r(ALL, i) = r(ALL, i)+Ξpr((i−1)·K+1 TO i·K, (j−1)·K+1 TO j·K)*c(ALL, j)
ENDFOR
r(ALL, i)=r(ALL, i)+h · P*(transpose of ED)-h/2· sum(v(ALL, i))

ENDFOR

\\calculate c, Eq. (9)
c=(inverse of Ξpt)*r

where l is the number of time-series provided, and K =M/l with M being the total
number of base function used. The operators ∗ and · refer to matrix multiplication
and scalar multiplication, respectively. For the calculations within the matrixes, one
should interpret TO as the linear span of integer indices within a column or row of a
matrix, and similarly ALL as all the respective indices within a column or row of a
matrix. Note that Eqs. (7) and (8) are implemented with l = 2 for-cycles here, but
for general l one should include l nested for-cycles.
Given in this vectorized form, the algorithms are quite efficient and the process-

ing time needed is very short. In the implementation one should simply follow the
dimensions of the vectors and matrices to reach the correct evaluation. For example,
if we are given two (l = 2) time-series of length N = 4000 and we use six base func-
tions in total (M = 6) with three (K = M/l = 3) base functions for each data time
series, then the respective dimensions of the matrices are: El×l = E2×2, rK×l = r3×2,
ΞM×M = Ξ6×6, ck×l = c3×2, PK×N = P2×4000 and vl×K×N = v2×3×4000. For ma-
trix implementation, it makes sense for some of the variables to be broken into parts
like vl×K×N = {v1K×N ,v2K×N}, or to be filled in parts e.g. ΞM×M can be filled in
four ΞK×K parts. Note that in this way the dimensional representation of the vectors
is slightly altered from the theoretical notation in order to reach the vectorized form
in the interests of faster calculations.
The three algorithms described are applied to a single window of data. The

time-series are separated into sequential blocks, and the algorithms are applied
to each of them in turn. The core of dynamical Bayesian inference is that it uses
informative priors i.e. the evaluation of the next block of data depends on and
uses the evaluation results from the previous block. The process of information
propagation, between the n posterior and the next n + 1 prior distribution, can
be adjusted to allow the time-variability of the parameters to be followed. We
used propagation depending on the concentration matrix Ξpt or on the vector of
parameters cpt. We now describe propagation with respect to the concentration
matrix Ξpt:

Algorithm 4: Propagation
cn+1pr = c

n
pt

invΞn = inverse of Ξnpt;
invDiffn=0
FOR i=1:K
invDiffn(i,i)=p2w*invΞ

n(i,i)
ENDFOR
Ξn+1pt =inverse of (invDiff

n+invΞn)

Once the inference has been performed, one can use the inferred parameters to
detect certain dynamical and phenomenological characteristics of the interacting
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systems. For example, calculating the norm of the inferred parameters together with
the relevant base functions, one can detect the coupling strength and directionality
between the oscillators [27,28,30,38,39]. Similarly, one can reconstruct the form of
the coupling function [1,6,40–42]. One can determine whether or not the systems
are synchronized [33,43,44], once the parameters have been inferred. For the case of
phase synchronization this can be done, for example, with a map representation and
the modified Newton root-finding method (see [10] for details), while for generalized
synchronization it can be done by evaluation of the largest Lyapunov exponents [11].
In this way both phase and generalized synchronization can be detected within the
same framework based on the dynamical Bayesian inference presented. It is worth
pointing that, by adopting this approach, one detects intrinsic synchronization based
on the effective connectivity [45], which differs from other synchronization detection
methods based on statistics of the phase and state time-series [31–33,46]. This can
sometimes be advantageous [47].

5 Examples

In this section we outline three examples of the reconstruction of coupled oscillators
that have time-varying dynamics and which are also subject to noise. The first exam-
ple illustrates the basics of the inference method on a simple phase oscillator model,
while the second example involves limit-cycle oscillators and presents the detection
of several characteristics and relationships that can be detected from the inferred
parameters. The third example presents the inference of coupled chaotic systems in
state space. MatLab codes for the examples are provided at the following link1.

5.1 Coupled phase oscillators

In order to present in a transparent way the basics of the inference technique we first
consider two coupled phase oscillators [48] subject to noise:

φ̇1 = ω1(t) + a1 sin(φ1) + a3(t) sin(φ2) +
√
E11ξ1(t)

φ̇2 = ω2 + a2 sin(φ1) + a4 sin(φ2) +
√
E22ξ2(t).

(10)

Each oscillator is described by the frequency parameters ω1, ω2, the parameters for
their self-dynamics a1, a4 and the coupling parameters a2, a3 for the direct influence
coming from the other oscillator. Two parameters are set to be periodically time-
varying, the frequency ω1(t) = 2 − 0.5 sin(2π0.00151t) and the coupling parameter
a3(t) = 0.8−0.3 sin(2π0.0012t). The noises are set to be white Gaussian and mutually
uncorrelated. The other parameter values are ω2 = 4.53, a1 = 0.8, a2 = 0, a4 = 0.6,
E11 = 0.03 and E22 = 0.01. For all the examples we used a sampling of h = 0.01.
Figure 1 shows samples from the resultant time series which serve as input for the
dynamical Bayesian inference.
The choice of phase oscillators is very convenient for inference, because one needs

to reconstruct the phase dynamics. Therefore, the phase model is known beforehand
and the deterministic terms of the rhs of the coupled system (10) are the actual base
functions to be used for inference of the six parameters (ω1, ω2, a1, a2, a3 and a4).
Inference results from a single block of data are presented in Table 1. The agreement
between the actual (intrinsic) parameters and their inferred values is excellent, and the
method evidently works to high precision. Additionally – and which is unique for this

1 http://py-biomedical.lancaster.ac.uk/
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Fig. 1. The instantaneous phases generated by the model (10) of two coupled phase oscil-
lators. (a) The phase φ1 and (b) φ2. For simpler presentation, the phases are “wrapped”
within 2π. The enlarged panel on the right illustrates the noise perturbations of φ1 on an
expanded scale.

Table 1. Results from the inference of the numerically simulated system (10). The first row
describes the physical meaning of the parameters, and the second and third two rows show,
respectively, the actual values of the parameters and their inferred mean values. The results
are presented for one window of data around t = 1980 s.

Parameters ω1 ω2 a1 a2 a3 a4 E11 E12, E21 E22

Intrinsic values 2.032 4.530 0.800 0.000 1.013 0.600 0.030 0.000 0.010
Inferred means 2.026 4.537 0.803 −0.014 1.054 0.596 0.029 0.000 0.010

method – the intensity and the correlations of the noise are inferred very precisely.
Figure 2 shows the time-variations of all the parameters inferred from sequential
windows of length w = 40 s, with a propagation constant pw = 0.2. It is clearly
evident that the parameters and their time-variability are inferred precisely.

5.2 Coupled limit-cycle oscillators – phase domain inference

The second example involves a system of two coupled limit-cycle oscillators, which
can serve as a model for a number of oscillatory processes that occur in nature, in-
cluding electrochemical, mechanical, cardio-respiratory, and other biological systems
[1,6,49,50]. The model consists of two interacting Poincaré oscillators subject to noise:

ẋ1 = −
(√
x21 + y

2
1 − 1

)
x1 − ω1(t)y1 + ε1(x2 − x1) +

√
E11ξ1(t)

ẏ1 = −
(√
x21 + y

2
1 − 1

)
y1 + ω1(t)x1 + ε1(y2 − y1) +

√
E22ξ2(t)

ẋ2 = −
(√
x22 + y

2
2 − 1

)
x2 − ω2y2 + ε2(t)(x1 − x2) +

√
E33ξ3(t)

ẏ2 = −
(√
x22 + y

2
2 − 1

)
y2 + ω2x2 + ε2(t)(y1 − y2) +

√
E44ξ4(t),

(11)
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Fig. 2. Time-evolution of the parameters inferred from model (10). (a) and (b) Present the
two frequencies, (c) and (f) are the self-dynamics parameters, and (d) and (e) present the
coupling parameters. In each case, the actual values of the parameters are indicated by the
black curves underlying their inferred values which are in gray.

where periodic time-variability is introduced in the frequency of the first oscillator
ω1(t) = 1 − 0.4 sin(2π0.002t) and in the coupling parameter from the first to the
second oscillator ε2(t) = 0.2 − 0.1 sin(2π0.0017t). The noises are again white and
Gaussian, with no correlations between them. The other parameters are ω2 = 4.91,
ε1 = 0.05, E11 = E22 = 0.007 and E33 = E44 = 0.004. The systems are simulated in
state space, and the corresponding signals and phase portrait of the first system are
given in Figs. 3a and b.
The phases can be estimated as φi = arctan(yi/xi) (arctan being a four-quadrant

function) from the state signals. Alternatively, one can use the Hilbert [50] or syn-
chrosqueezed transforms [51]. The two phase time-series act as input for the dynam-
ical Bayesian inference. The choice of base functions for the inference needs to be
determined in such a way that the phase dynamics can be reconstructed effectively.
Because of their oscillatory nature and periodic solutions, we decompose the phase
dynamics into Fourier series. Hence Fourier series up to some order serve as base
functions for the dynamical Bayesian inference. However, care must be taken to en-
sure that none of the functions have strong linear dependences on each other, as this
can lead to imprecise and wrong separation of parameters within the inference: for
example, choice of sin(x) and sin(−x), would rise to problems of precisely this kind
because of their mutual linear dependence. In the example, we used only one side of
the expansion, e.g. for sin(nφ1 +mφ2) we used the components n = 1, . . . ,K instead
of n = −K, . . . ,K. The reconstruction results for the time-varying parameters
are presented in Figs. 3c and d. The periodic sine variations are evident both in the
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Fig. 3. Inference of time-varying parameters from the model (11) of two coupled limit-cycle
oscillators. (a) Phase portrait showing the noisy state of the first oscillator. (b) The time-
series of the two oscillators x1(t) and x2(t). (c) The inferred time-evolution of the frequency
parameter, and (d) the inferred net coupling from the first to the second oscillator.

frequency and the coupling strength. Note that the coupling amplitude is evaluated
as the norm of all the relevant inferred parameters that describe this influence.

One can use the inferred parameters, not only to evaluate the characteristics of
individual oscillators, but also to determine whether the coupled system undergoes
any qualitative transitions. An obvious example of the latter is the onset or dis-
appearance of synchronization. For this reason we modify the parameters of model
(11) with ω1(t) = 1 − 0.4 sin(2π0.0022t), constant coupling parameter ε2 = 0.2 and
ω2 = 1.4. Such a combination of parameters takes the coupled system into and out
of synchrony intermittently. The phase difference shown in Fig. 4a is bounded during
the synchronized intervals [50]. Applying the procedure of return maps and the mod-
ified Newton root-finding method [10] we can identify the synchronization intervals
(Fig. 4b), which correspond to the intervals of constant phase difference as expected.
The map procedure is equivalent to a determination of whether or not the coupled
phase oscillator model, with the inferred parameter values, is synchronized. Note also
that, during the synchronized intervals, the phases remain almost identical and they
do not span enough of the available space for inference (the phase difference appears
as non-zero plateaus in Fig. 4a because it includes an offset corresponding to the phase
difference that existed at the start of the synchronization interval considered). This
can result in inferred parameters that are far from their intrinsic values. However, the
whole set of parameters is again correlated as if it was coming from a synchronized
system. One might ask: why do we need to undertake such a complicated procedure
to detect synchronization, when something as simple as the phase difference can give
a similar answer? The point is that, with the use of the intrinsic inferred parameters,
one can distinguish whether or not the phase slips and synchronization transitions
are noise-induced [1].

Coupling functions are arguably the most important part of the description of
the inter-oscillator interactions. They can describe the functional relationship, the
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Fig. 4. Detection of intermittent synchronization in the system (11). (a) The phase dif-
ference ψ(t) showing the qualitative statistical occurrence of synchronized intervals, which
appear as bounded plateaus. (b) The synchronization index demonstrating the detected in-
trinsic synchronization intervals, evaluated from the inferred parameters. The high values
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Fig. 5. Coupling functions inferred for from the model (11) of two interacting limit-cycle
oscillators. (a) The functional influence q1(φ1, φ2) from the second to the first oscillator. (b)
The coupling function q1(φ1, φ2) from the first to the second oscillator. The functions are
inferred within one window of data.

law governing the mutual interactions, and the routes to qualitative transitions. As
already mentioned above, coupling functions can be used quite generally to describe
different aspects of the interactions that occur between a great diversity of oscilla-
tory systems, whether e.g. cardio-respiratory, electrochemical or mechanical [1,6,40–
42,52,53]. By representation on a 2π-phase grid evaluated for the relevant inferred
parameters, we can determine and visualize the phase dynamics very effectively. The
coupling functions of systems (11) inferred from a single window are shown in Fig. 5.
By inferring the dynamics in a succession of windows, we can follow the time-evolution
of the functions [1]. Moreover, the coupling function qi(φi, φj) can be further decom-
posed into self, direct and indirect coupling influences [35], and each of these can be
studied separately.
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5.3 Coupled chaotic systems – state domain inference

Up to this point, the review has focused mainly on the inference of phase dynamics.
The main reason was to present a method that will be quite generally applicable to
coupled oscillatory systems. However, there are some situations where the dynamics
needs to be analyzed directly from the measured signals in state space. For example,
the estimation of phases from chaotic systems can be problematic, while inference
in the state domain is directly accessible. If state signals are to be analyzed, then
the model Eq. (2) will still hold; the base functions can have e.g. a polynomial form,
and all the rest of the equations and algorithms can equally be applied to the state
signals. For other applications of the inference of (coupled) dynamics in state space
see [11,12,21,22,54].
Coupled state space systems, especially chaotic systems, have played an impor-

tant role in applications to the secure encryption of communications [55–58]. Recently,
a new class of secure communication that is highly resistent to conventual attacks,
was introduced [11] using the same Bayesian method presented in this tutorial. The
scheme makes use of the coupling functions between interacting dynamical systems.
The information signals are encrypted as the time-variations of independent cou-
pling functions between the coupled systems. Using predetermined forms of coupling
function, we can apply dynamical Bayesian inference on the receiver side to detect
and separate the information signals while simultaneously eliminating the effect of
external noise. The procedure results in an unbounded number of encryption key
possibilities, allows the transmission/reception of more than one signal simultane-
ously, and is robust against external noise. The use of chaotic systems is not essential
for the encryption. It does, however, bring an additional level of security associated
with the scrambled random-like appearance of chaotic signals.
It was at the beginning of the chaotic communication era when Pérez and Cerdeira

[59] demonstrated a way of breaking such communication schemes by extracting the
messages they carried. Their methods were based on reconstruction of the attractors’
properties from the transmitted signals only. This valuable work not only broke the
existing schemes, but also introduced an attacking principle that all future (chaotic)
attractor-based schemes must resist. The new scheme based on coupling functions and
dynamical Bayesian inference is able to withstand such attacks because the informa-
tion is encrypted in the weak coupling between two independent and self-sustained
attractors.
To illustrate dynamical Bayesian inference in state space we consider a coupled

pair of chaotic Rössler and Lorenz oscillators. This coupled system represents the
coupling-function-based communication model and is duplicated on both the trans-
mitter and receiver sides. The model is given by a Rössler system:

ẋ1 =− 2y1 − z1
ẏ1 =2x1 + 0.45y1 +

√
E11ξ1(t)

ż1 =2 + x1z1 − 10z1,
(12)

driving a Lorenz system

ẋ2 =10y2 − 10x2
ẏ2 =28x2 − x2z2 − y2
ż2 =x2y2 − 2.66z2 + ε1(t)y1 + ε2(t)x1z1 +

√
E22ξ2(t),

(13)

where the noises are taken to be white and Gaussian with noise intensities E11 = 0.05
and E22 = 0.3. The coupling parameters ε1(t) and ε2(t) are set to be time-varying
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Fig. 6. The coupled chaotic Rössler and Lorenz systems with time-varying parameters and
subject to noise (12), (13). The phase portraits or strange attractors are shown (a) for the
Rössler and (b) for the Lorenz systems. Short time-segments of the chaotic time series are
presented: (c) z1(t) from the Rössler and (d) x2(t) from the Lorenz system.

i.e. they can represent the information messages that are to be securely encrypted.
The first coupling is binary ε1(t) = {0, 2}, while the second is continuous ε2(t) =
3 + 0.3 sin(2π0.001t). The attractors and signals of such chaotic systems subject to
noise and time-varying couplings are shown in Fig. 6.
This particular example is very convenient for the use of dynamical Bayesian

inference on the receiver side because one knows both the model and its base functions
a priori, and has access to the time-series of all the dimensions. Additionally, the
chaotic signals with their notion of strange-attractors tend to span a broad region of
state space (larger than e.g. limit-cycle oscillators), which provides more information
and makes the inference easier and more precise. Hence, by using the functions on
the rhs of systems (12), (13) as base functions, one can infer the model parameters
and their time-variability. All six multivariate state time-series from the two coupled
systems serve as input for the Bayesian inference. Among them are the two time-
varying coupling parameters, which in the communication example could convey the
information messages as shown in Fig. 7. As it can be seen, both the digital (e.g.
1010010) and the continuous (e.g. sine or speech) message can be inferred with great
precision.

6 Discussion and conclusion

The aim of this review has been to provide insights into the implementation of dynam-
ical Bayesian inference in a clear and simple way. Further details of the method and
its applications can be find in [1,10,12,21,22]. Needless to say, the overall framework
can be much broader and a number of important generalizations are possible.
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The examples here included only a pair of coupled systems, while in general the
technique can be applied to a larger group e.g. a small-scale network of oscillators
[10,60]. The phase decompositions can be applied for pairwise couplings but, more
importantly, joint coupling influences can also be inferred. In such cases one can detect
unique states characteristic only of the joint couplings, like triplet synchronization
[61]. In these kind of analysis, the effective coupling [45,62] should be distinguished
by appropriate use of surrogate testing [63].
As examples, we analyzed two types of model – oscillatory phase dynamics models

and a chaotic state-space model. The phase dynamics coming from the oscillatory
systems was well-modeled in terms of Fourier series while, for the chaotic secure
communications example, we exploited the fact that the model was known beforehand.
In general, however, the model might not have been known or easily decomposable.
In such cases, one would have needed to apply one or some of the known system
identification techniques [64,65] prior to the inference.
The procedure of information propagation that allows time-variability to be

tracked, depends on pw which acts as a free parameter. One can further improve this
procedure by making the parameter adaptive in order to follow the time-variability
more closely and to infer the noise more precisely. This might be realized by deter-
mining the optimal parameter from a spectrum of values within each window. Even
though this procedure would be very slow, it might prove helpful and could be nec-
essary in certain cases.
The phase base functions are not strictly confined all to be from Fourier series, and

other additional functions can be included. For example, if we have expansion up to
second order K = 2, one can include also other components such as sin(7φ1− 4φ2) in
order to detect synchronization more precisely for 7:4 synchronization ratios. Similarly
the state base functions can be extended to include a large set of functions and
only the ones that intrinsically belong to the underlying model will be inferred as
“non-zero” [12].
Within the framework of dynamical inference, the differential χ̇n is calculated as

χ̇n = (χn+1 − χn)/h. Improved performance can be accomplished if one provides
this as directly estimated instantaneous frequency – e.g. using the synchrosqueezed
transform [51] or nonlinear mode decomposition [35]. Alternatively, certain digital
filters (e.g. the Savitzky-Golay filter) can be used for smoothing the noise effect before
evaluating the derivatives.
The inference of causality between interacting oscillatory systems has attracted

much attention in the last decade. In addition to nonlinear dynamics methods, both
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for inferring direction of coupling or the coupling function [27,34], methods based on
information theory [28] and wavelet bispectral analysis [30], there is the dynamical
Bayesian inference method presented above. It facilitates comprehensive reconstruc-
tion of the dynamical properties of the interacting systems – either two or a whole
network – and allows every aspect of their interactions to be studied, including their
synchronization, direction of coupling, and coupling function. The approach provides
deep insight into the properties of the dynamical systems of interest and thus makes
possible both diagnosis and prognosis of their behaviour.
Of course, dynamical Bayesian inference possesses relationships, similarities and

complementarities with other methods, including the inference of deterministic or sto-
chastic models, based on Bayesian theory, particle filters and maximum likelihood es-
timators [2–6]. The inference of coupling causality has huge practical applicability and
methods based on Granger causality or transfer entropy [28,29,66–68] have recently
become popular in this context. We note however, that such methods infer statistical
effects, while the method presented here, being based on a dynamical model, can infer
causal mechanisms [69]. In other words, Granger causality-like methods infer only the
existence of causal effect and not the nature and mechanism of the cause itself. In neu-
roscience, Granger causality methods are linked to directed functional connectivity,
while dynamical inference methods distinguish effective connectivity [62].
In summary, this tutorial has been intended to familiarize the reader with a tech-

nique for the Bayesian inference of time-evolving coupled dynamics in the presence
of noise. A comprehensive description of the method, including the theoretical con-
straints, algorithms, implementation, and demonstrations of their main features in
relation to a few characteristic examples has been provided. To facilitate the first
steps in applying this powerful and useful method MatLab codes including examples
are also being made available. We hope that the tutorial will lead the reader to new
insights into dynamical phenomena from measured data, and that it will provide a
useful aid for tackling a diverse range of signal processing problems.

Our grateful thanks are due to Dmytro Iatsenko, Valentina Ticcinelli, Will Gibby, Gemma
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Physical Sciences Research Council (UK) [Grant No. EP/100999X1].
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