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Secure encryption is an essential feature of modern communications, but rapid progress in illicit
decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the
time-varying nature of the cardiorespiratory interaction, here we introduce a new class of secure
communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures,
this cipher makes use of the coupling functions between interacting dynamical systems. It results in an
unbounded number of encryption key possibilities, allows the transmission or reception of more than one
signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as
the time variations of linearly independent coupling functions. Using predetermined forms of coupling
function, we apply Bayesian inference on the receiver side to detect and separate the information signals
while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily
extendable to support different communications applications within the same general framework.
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I. INTRODUCTION

It is often the case that great scientific and technological
discoveries are made by mimicking biological methods and
the systems already found in nature [1–3]. The complexity
and phenomena associated with these natural structures and
functions have been accumulated over a very long period of
evolution and optimization, and they can lead to a diversity
of designs and applications for solving contemporary
human problems [4–7]. Recently, it was discovered that
the cardiorespiratory coupling function can be decomposed
into a number of independent functions and that it is of a
time-varying nature [8]. This highly complex biomedical
function has inspired and motivated us to create a new class
of secure communications characterized by high efficiency
and modularity.
Secure communications [9–17] can be based on different

technologies, each characterized by its particular speed,
size, energy consumption, and so on. Ideally, one seeks
basic communication concepts that are applicable not only
to existing technologies, e.g., magnetic vortex oscillators,
graphene circuits, analogue electronic systems, quantum
oscillators, and optical lasers [14,18–22], but also to the
foreseeable technologies of the future. However, the ques-
tion of where and how best to encrypt the information is far
from trivial. If one chooses to encrypt in terms of the

properties of a system, then the limited and small number of
properties means that the security can be broken by
conventional attack. The use of coupling functions, on
the other hand, brings great freedom in the encryption
process without changing the qualitative state of the
system, and thereby increases security. Our proposal of
coupling-function encryption, therefore, amounts to a
significant conceptual advance that is likely to be important
in many different technologies.
Although we take advantage of recent advances in the

understanding of time-variable, nonautonomous, dynamics
in, e.g., geophysics, biology, and astrophysics [23–26], our
present aims are quite different in that we consider how to
apply the corresponding theory [27] and methods to secure
communications. As we see below, the decrypting receiver
takes advantage of Bayesian inference. Its ability to infer
multidimensional, time-evolving and coupled dynamical
systems [8,28–30] makes it ideally matched to such
applications. Additionally, the fact that coupled systems
typically span a large volume of state space yields easier,
faster, inference and higher precision.
A common characteristic of dynamical systems in nature

is that they mutually interact, exerting influence and
transferring energy and/or matter between each other.
The interaction between two such systems is described
by their coupling function and coupling amplitude.
Coupling functions prescribe the physical rule specifying
how the interactions occur and defining the possibility of
qualitative transitions between the systems. They have
played an important role in studies of interaction in diverse
areas, including biology [31], geophysics [32], cosmology
[33], and chemistry [34]. Much progress has been made
towards being able to detect and quantify the causality,
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direction, and strength of the coupling amplitude [35–38]
based on the analysis ofmeasured time series.More recently,
however, efforts have focused on how to extract and
reconstruct the coupling functions themselves [8,39–42],
but many aspects still remain to be investigated, e.g., the
problemof treatingmore than two independent andnonlinear
coupling functions, each describing a relationship between
the two systems, which we describe below.
These developments have unexpectedly opened the door

to a novel class of secure communications [43]. In what
follows, we introduce the new scheme, explain how it
works, present examples of encryption and decryption in
action, and point out some of the considerable advantages
of the new cipher. Section II provides a succinct description
of the underlying protocol and Sec. III discusses how it is
implemented. In Sec. IV, we provide a detailed description
of an exemplary realization of the scheme in terms of
coupled Rossler and Lorenz oscillators and quantify its
high noise tolerance. We discuss the results obtained and
the advantages of the scheme in Sec. V. The Appendix
describes a second and more complicated example of the
new scheme: we demonstrate the use of pairs of coupled
Lorenz systems for the encryption and decryption of ten
independent binary information signals in parallel and very
briefly discuss the results.

II. PROTOCOL

We illustrate the central concepts of our new commu-
nication framework in Fig. 1. A number of information
signals coming from different channels or communications
devices (e.g., mobile phone, sensor networks, or wireless
broadband) are to be transmitted simultaneously. Each of
the signals si is encrypted in a coupling function; i.e., they
serve as coupling scale parameters in the nonlinear cou-
pling functions between two self-sustained systems in the
transmitter. Two signals, one from each system, are trans-
mitted through the public channel. At the receiving end,

two similar systems are enslaved, i.e., completely
synchronized, by the two transmitted signals. Finally, by
applying time-evolving Bayesian inference to the recon-
structed systems, one can infer the model parameters and
decrypt the information signals si. An important feature of
the scheme is the private key holding information about the
particular coupling functions in use—which, in principle,
has an unbounded continuum of possible combinations.
The number of coupling functions in use will always be
finite, depending on the specific number of information
channels that are needed; the choice of forms available for
the coupling functions (forming the private key) is, how-
ever, unbounded.

III. IMPLEMENTATION

A. Systems model

Starting from a time series, the model to be inferred
consists of two noisy M-dimensional interacting systems
given by the following stochastic differential equation:

x
:
i ¼ fðxi;xjjcÞ þ

ffiffiffiffi
D

p
ξi

¼ gðxijc1Þ þ qðxi;xjjc2Þ þ
ffiffiffiffi
D

p
ξi; (1)

where i ≠ j ¼ 1, 2, c is the parameter vector, and
fðxi;xjjcÞ are base functions describing both the autono-
mous dynamics gðxiÞ and the coupling functions qðxi;xjÞ.
The noise is assumed to be white, Gaussian, and para-
metrized by a noise diffusion matrix D.
For optimal security, the systems to be coupled need to

be self-sustained, e.g., limit-cycle or chaotic oscillators.
Chaotic systems are convenient for inference within a
communications framework and confer the additional
security associated with conventional chaotic communica-
tion [9,13,14,44,45] by exploiting the unpredictable, ran-
domlike but deterministic [46] nature of chaotic signals to
encrypt the transmitted information. The latter approach

FIG. 1 Schematic of the communications scheme. Messages s1;…; sn are encrypted through their modulation of the coupling
functions connecting the two oscillators of the transmitter. Only two signals are transmitted through the public domain. For the particular
realization of the cipher discussed in the text, Eqs. (5) and (6), they are x1 and y2. The receiver consists of the same kind of oscillators
and the same coupling functions (effectively forming the privately shared key) as the transmitter and uses time-evolving Bayesian
inference to reconstruct s1; :::::; sn.
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has been popular mainly because of the high controllability
of chaos and the concept of complete synchronization
[47,48]. We emphasize, however, that the use of chaotic
systems here is inessential. Parameter modulation of an
attractor has been used in a number of earlier communi-
cation methods [13,49]; however, the modulation of differ-
ent coupling functions as applied here provides for a much
larger number of parameter encryption possibilities.

B. Time-evolving Bayesian inference

We outline succinctly the application of time-evolving
Bayesian inference [8] for the reconstruction of the
information encrypted within the interactions between
the dynamical systems. The model to be inferred is
described by the stochastic differential equation [Eq. (1)].
The inference is performed in state space, and the base

functions fðxi;xjjcÞ consist of the systems base functions
gðxiÞ and the all-important coupling functions qðxi;xjÞ,
which are specified by the encryption key. Inferential
methods are conventionally used to treat physical problems
where the model (i.e., its base functions) is hidden or
unknown. In contrast to this, in our proposed application to
secure communication, we know the model and the base
functions a priori.
If 2 ×M time series X ¼ fxn ≡ xðtnÞg (tn ¼ nh) are

provided as inputs, the fundamental task for the Bayesian
dynamical inference [8,30] is to reveal the unknown model
parameters M ¼ fc;Dg. The inference relies on the
application of the Bayes theorem, which is used to calculate
the so-called posterior density pX ðMjXÞ of the unknown
parameters M, given a prior density ppriorðMÞ that
encloses previous knowledge of the unknown parameters
based on observations, and the likelihood function
lðX jMÞ, i.e., the conditional probability density to
observe X given choice M of the dynamical model:

pX ðMjXÞ ¼ lðX jMÞppriorðMÞR
lðX jMÞppriorðMÞdM :

If the sampling is dense enough, the problem can
conveniently be solved using the Euler midpoint x�

n ¼
ðxnþ1 þ xnÞ=2 discretization of Eq. (1):

xi;nþ1 ¼ xi;n þ hfðx�
i;n;x

�
j;njcÞ þ h

ffiffiffiffi
D

p
zn; (2)

where zn is the stochastic integral of the noise term over
time: zn ≡ R tnþ1

tn zðtÞdt ¼ ffiffiffi
h

p
Hξn; for the H matrix that

satisfies the Cholesky decomposition HHT ¼ D.
The noise under consideration zn is statistically inde-

pendent and the likelihood is given by a product over n of
the probability of observing xnþ1 at each time. The joint
probability density of zn is used to find the joint probability
density of the process in respect to xnþ1 − xn by imposing
Pðxnþ1Þ ¼ detðJxξ ÞPðξiÞ, where Jxξ is the Jacobian term of

the transformation of variables that can be calculated from
the known polynomial base functions. For high sampling
rates (h → 0), the determinant of the Jacobian can be well
approximated by the product of its diagonal terms:
detðJxkðtnÞξkðtnÞ Þ ≈

Q
l
∂fkðx·;nÞ

∂x . Here, and in what follows, the
dot index in x. is substituted with the relevant index. The
base functions are linearly parametrized as
fðx·jcÞ ¼ cfðx·Þ. The negative log-likelihood function S ¼
− lnlðX jMÞ is then expressed as

S ¼ N
2
ln jDj þ h

2

XN−1

n¼0

�
ck

∂fkðx·;nÞ
∂x

þ ½x: n − ckfkðx�
·;nÞ�TðD−1Þ½x: n − ckfkðx�

·;nÞ�
�
; (3)

with x
:
n ¼ ðxnþ1 − xnÞ=h and implicit summation over the

repeated index k.
Next, we assume the prior probability to be a multivariate

normal distribution. This, together with the specific form of
the log-likelihood [Eq. (3)], ensures that the posterior
probability will be a multivariate normal distribution.
Given such a distribution as a prior for the parameters c,
with mean c̄, and covariance matrix Σprior ≡ Ξ−1

prior, the
stationary point of S is calculated recursively from

D ¼ h
N
ðx: n − ckfkðx�

·;nÞÞTðx: n − ckfkðx�
·;nÞÞ;

ck ¼ ðΞ−1Þkwrw;

rw ¼ ðΞpriorÞkwcw þ hfkðx�
·;nÞðD−1Þx: n −

h
2

∂fkðx·;nÞ
∂x ;

Ξkw ¼ ðΞpriorÞkw þ hfkðx�
·;nÞðD−1Þfwðx�

·;nÞ; (4)

where summation over n ¼ 1;…; N is assumed and the
summation over repeated indices k and w is again implicit.
The initial prior is set to be the noninformative flat normal
distribution given by Ξprior ¼ 0 and c̄prior ¼ 0. For a given
sequential block of data X , one applies Eq. (4) to evaluate
the posterior multivariate probability NX ðcjc̄;ΞÞ, which
explicitly defines the probability density of each parameter
set of the model [Eq. (1)].
The main idea of our communication scheme is to

encrypt the information in a specific time evolution of
the parameters. Therefore, the inference technique needs to
follow the time evolution of the parameter set c while
separating these effects from the unavoidable noise. In
order to achieve this, we modify [8] the propagation
procedure between the covariance of the current posterior
Σn
post and the next prior Σnþ1

prior. We define a squared
symmetric positive definite matrix Σdiff , which prescribes
how much each parameter diffuses normally. Thus, the next
prior probability of the parameters is the convolution of two
current normal multivariate distributions, Σpost and Σdiff :
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Σnþ1
prior ¼ Σn

post þ Σn
diff . The diffusion matrix is expressed as

ðΣdiffÞi;j ¼ ρijσiσj, where σi is the standard deviation of the
diffusion of ci in the time window tw, and ρij is the
correlation between the change in parameters ci and cj. We
consider Σdiff to be such that there is no change of
correlation between parameters (ρij ¼ δij) and that each
σi is a known fraction of the relevant standard deviation
from the posterior σi ¼ pwðσnpostÞi, where pw indicates that
the parameter p refers to a window of length tw. Moreover,
in the proposed communication scheme, it is known
beforehand that some, but not all, of the parameters are
time evolving. Thus, one can use selective propagation
where not all, but only the selected correlations ρii from the
diagonal, have nonzero values.

IV. AN EXAMPLE

As an example of the cipher [50] in action, we take the
transmitter to consist of a Rössler oscillator [Eq. (5), left]
coupled to a Lorenz [Eq. (5), right] system:

x
:
1 ¼ 2þ x1ðx2 − 4Þ þ ξ1; y

:
1 ¼ 10y2 − 10y1 þ ξ2;

x
:
2 ¼ −x1 − x3; y

:
2 ¼ −y1y3 − y2 þ s0ðtÞy1

þ s1ðtÞx2x3 þ s2ðtÞx23
x
:
3 ¼ x2 þ 0.45x3; y

:
3 ¼ y1y2 − 2.67y3 þ ξ3:

(5)

Only the signals x1 and y2 are transmitted, and they
completely synchronize [47] the Rössler and Lorenz
systems at the receiver:

u1 ¼ x1; w
:
1 ¼ 10y2 − 10w1 þ ξ4;

u
:
2 ¼ −x1 − u3; w2 ¼ y2;

u
:
3 ¼ u2 þ 0.45u3; w

:
3 ¼ w1y2 − 2.67w3 þ ξ5: (6)

The information signals acting as time-dependent non-
autonomous terms are given by binary pseudorandom
sequence signals s0ðtÞ ¼ f0; 28g, s1ðtÞ ¼ f1.6; 2.4g, and
s2ðtÞ ¼ f0; 0.6g. We note in passing that continuous
signals can be encrypted with equal facility. The noise
sources ξ1; :::::; ξ5, acting on different levels, are assumed
to be white, Gaussian, and of the same intensity D ¼ 0.05.
The differentiation was rescaled to d=dτ, with τ ¼ t=2000
for the Rössler and τ ¼ t=1000 for the Lorenz oscillator.
The signals are generated by numerical simulation, but
analogue electrical circuits [21] can equally be used.
Bayesian inference was applied to the receiver signals u
and w using the same base functions as the right-hand side
of the transmitter model [Eq. (5)].
The Rössler and Lorenz oscillators are unidirectionally

coupled through the information signals s1 and s2 and,
depending on signal s0, they can be either nonsynchronized

or synchronized. In Figs. 2(a)–2(c), the driven oscillator y
for s0f0g ¼ 0 is asymptotically stable and the two oscil-
lators can undergo generalized synchronization [51]. The
latter statement can be proved by application of the second
Lyapunov stability method to the dynamical error system
e ¼ y − y0, where y0 is an identical copy of y with different
initial conditions. By using the Lyapunov function L ¼
1=2ðe21=10þ e22 þ e23Þ, one can show that L

: ¼
−ðe1 − e2

2
Þ2 − 3

4
e22 − 2.67e23 < 0, which proves that the

driven system y is globally asymptotically stable and the
two oscillators x and y are synchronized. The same
phenomenon can be detected by evaluation of the largest
Lyapunov exponent [52] (or alternatively by basin stability
[53]) of the driven oscillator model [Eq. (5)] using the
inferred parameters. If the exponents λ are negative, the
system y is asymptotically stable and generalized synchro-
nization occurs. By evaluating the Lyapunov exponents for
each sequential block of data from the Bayesian inference,

FIG. 2 The communication procedure based on coupled
chaotic oscillators [Eqs. (5) and (6)]. (a) The transmitted binary
signal s0ðtÞ acting as a ρ variable in the Lorenz oscillator.
Lissajous curves qualitatively indicating the existence of
generalized synchronization during (b) synchronized and
(c) nonsynchronized intervals. The gray arrows point to syn-
chronization intervals in the s0ðtÞ signal. (d) The largest
Lyapunov exponent detected from the driven Lorenz oscillator
serves as an index of time-evolving generalized synchronization.
(e) Simultaneously transmitted signals s1ðtÞ and s2ðtÞ. For
comparison, the original signals s0ðtÞ, s1ðtÞ, and s2ðtÞ are
presented in dark color below the received ones shown in light
transparent color in (a) and (e)—note that in some intervals they
are indistinguishable.
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one can follow the evolution of the synchronization and the
associated transitions as illustrated in Fig. 2(d).
The binary information signal s0ðtÞ acts on and changes

the attractor properties of the Lorenz oscillator alone.
Hence, this communication information is insecure and
can be broken by the use of standard attack procedures [54].
In this way, the s0ðtÞ signal serves more as decoy
information and a control signal that takes the two
oscillators through qualitative transitions of generalized
synchronization. The two information signals s1ðtÞ and
s2ðtÞ, on the other hand, are encrypted through the weak
and nonlinear interactions, providing a complicated
dynamical mixing that is highly resistant to the standard
attacks [54,55]. On top of this, the transitions in or out of
generalized synchronization bring additional impediments
to potential attacks on the interactions via which the
information is being conveyed. Despite these complexities,
Bayesian inference can detect and separate the two signals
precisely, as shown for s1ðtÞ and s2ðtÞ in Fig. 2(e).
Note that the proposed communication technique can

transmit more than one information signal simultaneously.
This can be used to provide a higher level of security or
inherently to allow multiplexing.
Of crucial importance is the fact of an intruder being

ignorant of the form and number of the coupling functions
(in particular) and, thus, being unable to decrypt the
signals in any simple way. The choice of the form of
coupling functions comes from a set of functions that is
not bounded. This property is highly desirable for con-
structing a private encryption key. In theory, it enables the
communications framework to resist brute-force attacks,
and in practice [43], it allows for the use of dynamical
keys or dynamical physical unclonable functions (PUFs).
The latter could be implemented with analogue technol-
ogy, exploiting the unbounded continuum of the key. At
relatively small computational expense, one could include
additional nonlinear coupling functions (see the Appendix,

showing the coupling-function encryption of ten binary
information signals), thereby increasing the complexity in
the encryption and making the communications even
harder to break.

A. Noise tolerance

In practical applications, there will be noise from various
sources that is potentially damaging to the communication.
The proposed Bayesian framework is by definition sto-
chastic inference, Eq. (1), and naturally separates the effect
of the noise from what is inferred to be internal determin-
istic dynamics. To illustrate this advantage, we first used
the communication model [Eqs. (5) and (6)] for sending
only one pseudorandom binary signal s1ðtÞ ¼ f−2.5; 2.5g.
The modified terms at the transmitter are now expressed as
y
:
2 ¼ −y1y3 − y2 þ 28y1 þ s1ðtÞx2x3. The effect of chan-
nel noise on the success of the information transfer is
shown in Figs. 3(a) and 3(b). It is evident from the
appearance of small errors that corruption of the two
binary states occurs at around and below ∼4 dB. This is
well below the 15 dB SNR of a digital transmission or the
40 dB SNR of a wireline communication channel in a real
environment [55], thereby demonstrating the high noise
tolerance of our scheme.
Second, in order to confirm thehighnoise resistanceofour

scheme compared to that of other known encryption
schemes, we investigate how noise affects signal-masking
[13] communication. This case can act as a general example
of awhole class of secure communications schemesbasedon
complete synchronization [47]. It also corresponds to how
we transmit and recover the systems in the coupling-function
scheme, before the Bayesian inference is applied. For
this reason, we masked the y2 signal at the trans-
mitter with a binary signal s3ðtÞ ¼ f0; 5g as y

:
2 ¼−y1y3 − y2 þ 28y1 þ s3ðtÞ, and we applied the relevant

recovery procedure [13]. The effect of channel noise on
the success of information transmission is shown inFig. 3(c):

FIG. 3 Example of how noise affects the communication of a binary signal using the model [Eqs. (5) and (6)]. (a) Deviations of the
demodulated signal from the initial binary states due to noise, presented as compact box plots (in terms of descriptive statistics: median,
quartiles, max, and min) as a function of signal-to-noise ratio (SNR). (b) Bit-error rate (BER) of the coupling-function scheme as a
function of SNR. (c) For comparison, BER of the signal-masking scheme as a function of SNR. In (a) and (b) the transmitted signal for
coupling-function encryption has the two binary values s1ðtÞ ¼ f−2.5; 2.5g, while in (c) for signal-masking encryption, s3ðtÞ ¼ f0; 5g.
In each run, 103 randomly ordered binary symbols are sent.
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erroneous detection of the binary information occurs at
around and below ∼20 dB. The fact that the coupling-
function scheme is noise resistent down to 4 dB points to
its superiority over signal-masking schemes and emphasizes
thebenefit of theBayesian inferenceusedwithinour scheme.

V. DISCUSSION AND CONCLUSION

The specific model used here is just as an illustrative
example of the cipher, while the scheme itself is inherently
modular. The choice that the oscillators be self-sustained
provides optimal conditions for encryption and dynamical
mixing, but it is not essential. The Bayesian inference can
function regardless. Limit-cycle oscillators (e.g., Van der
Pol oscillators) can be used, with the information messages
encrypted in a number of different nonlinear coupling
functions. Using chaotic systems can add to the difficulties
experienced by an intruder because the transmitted chaotic
signals have randomlike characteristics. This chaotic mix-
ing is additional to the encryption provided by the coupling
functions; we again emphasize that the use of chaos is not
essential for our new scheme, but just a potentially useful
addition that can add further difficulty for an illicit
decryptor. Similarly, one might choose to use chaotic maps
in order to provide for faster transfer with reduced resource
requirements. Within the Bayesian framework, Eq. (2) is
already discrete, which would allow the inference to be
adjusted for use with discrete maps. Finally, the transmitter
and receiver could consist of more than two systems, and
bidirectional multivariate coupling can also be used (see the
Appendix).
We anticipate that coupling-function encryption—thus

far just a theoretical concept—will have great impact on a
diversity of experimental implementations, e.g., on those
mentioned above [14,18,20–22]. Such systems can them-
selves be very complex, and changing some of their
intrinsic properties can easily lead to qualitative changes
in their nature. This can be avoided by encrypting the
information through weak couplings. In this way, a number
of information signals can be encrypted simultaneously
while not affecting qualitatively the existence or function of
the systems that are being used. The proposed decryption
method can then safely and reliably recover the transmitted
information.
In summary, our new class of communications enables

the secure transfer of several information signals simulta-
neously. Inspired by cardiorespiratory interactions
[8,25,30,56], it is made possible by recent developments
in Bayesian inference. These enable us to follow the time
evolution of the modulation of different nonlinear coupling
functions to which a potential intruder does not have
access. The encrypting key space is unbounded. The
facility of sending multiple signals simultaneously allows
the multiplexing and sharing of the same resources.
Because the Bayesian procedure involves stochastic infer-
ence, the communications scheme is inherently resistent to

external noise. This makes it suitable for implementation
not only for landline (e.g., telephone) but also for mobile
and wireless communications, where the level of external
interference tends to be higher. Our scheme is highly
modular and is readily extendable to support far more
complex and diverse communications applications than the
examples discussed here, within the same general
framework.
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APPENDIX: ENCRYPTION AND DECRYPTION
OF TEN BINARY INFORMATION SIGNALS

We now present an additional example, based on the use
of two coupled Lorenz systems for simultaneous trans-
mission of ten binary signals encrypted in separate, linearly
independent, coupling functions. We use this example to
demonstrate some points and generalizations about the
application and the modularity of the communications
framework. We also discuss some of its properties and
preferred modes of operation.
The main concept that facilitates the security of our

scheme is the form of the coupling functions. For clarity
of presentation, the example in the main text shows only
two unidirectional coupling functions. In general, how-
ever, there can be a larger number of bidirectional and
multivariate coupling functions. In the following exam-
ple, we use ten nonlinear coupling functions, each of
different form: Q¼fcosðy1Þx2; y22=y3; x1y2=y3;

ffiffiffiffiffi
y3

p
;

x22=y3; x2x3; x
3
1; sinðx3Þ; x23; x22g. Note that the form of a

coupling function refers to the algebraic function, e.g., as
in Q, and not just to the parameter value scaling a
particular function. The number of coupling functions
depends on the specific application (i.e., on the number
of information channels and devices connected to the
transmitter), and will always be finite, e.g., 10; 20; …. In
contrast, the form of the coupling functions can be very
different, and their choice is unbounded. For example,
one can add to the Q set the function combinations
cosðy1Þx2 sinðx3Þ, x23x1y2=y3;…; or one can include some
entirely new functions—again leading to choice from an
unbounded set of functions. This choice of which
particular functions are to be used acts as a key that
is privately shared between the transmitter and the
receiver. The information about the choice of coupling
functions can be stored on a chip, similarly to the
subscriber identity module (SIM) card for mobile phones,
and can be shared exclusively between the transmitter
and the receiver in each individual device realization.

STANKOVSKI, MCCLINTOCK, AND STEFANOVSKA PHYS. REV. X 4, 011026 (2014)

011026-6



We consider implementation of the cipher with two
coupled chaotic Lorenz systems. The transmitter is thus
given by the first Lorenz system with five coupling
functions acting in x1:

x
:
1 ¼ 10x2 − 10x1 þ s1ðtÞ cosðy1Þx2 þ s2ðtÞy22=y3

þ s3ðtÞx1y2=y3 þ s4ðtÞ
ffiffiffiffiffi
y3

p þ s5ðtÞx22=y3;
x
:
2 ¼ 28x1 − x1x3 − x2;

x
:
3 ¼ x1x2 − 2.67x3; (A1)

together with the second Lorenz system with five coupling
functions acting in y2:

y
:
1 ¼ 10y2 − 10y1 þ ξ1;

y
:
2 ¼ 28y1 − y1y3 − y2 þ s6ðtÞx2x3 þ s7ðtÞx31þ

þ s8ðtÞ sinðx3Þ þ s9ðtÞx23 þ s10ðtÞx22;
y
:
3 ¼ y1y2 − 2.67y3: (A2)

Only the signals x1 and y2 are transmitted through the
public channel. On the receiver side, the two chaotic
systems are completely synchronized [47]: the system u,
through x1, becomes effectively identical to the system x,

u1 ¼ x1;

u
:
2 ¼ 28x1 − x1u3 − u2;

u
:
3 ¼ x1u2 − 2.67u3 þ ξ2; (A3)

and the system w, through y2, becomes effectively identical
to system y,

w
:
1 ¼ 10y2 − 10w1;

w2 ¼ y2;

w
:
3 ¼ w1y2 − 2.67w3 þ ξ3: (A4)

The binary information signals acting as time-dependent
nonautonomous terms are given by the two level values,
s4ðtÞ ¼ f0; 1.5g, s5ðtÞ ¼ f0; 0.4g, and the rest are equal,
s1ðtÞ ¼ s2ðtÞ ¼ s3ðtÞ ¼ s6ðtÞ ¼ s7ðtÞ ¼ s8ðtÞ ¼ s9ðtÞ ¼
s10ðtÞ ¼ f0; 0.6g. The noise sources ξ1; :::::; ξ3 are
assumed to be white and Gaussian hξðtÞξðτÞi ¼
δðt − τÞD and of the same noise intensity D ¼ 0.05. To
speed up the systems, we change the frequency of oscil-
lation by rescaling the differentiation to d=dτ with τ ¼
t=1000 for the first Lorenz and τ ¼ t=1300 for the second
Lorenz oscillator. The different rescaling ensures that the
two chaotic systems have different frequencies and are
harder to mutually (in the generalized sense) synchronize.
This allows the couplings for the siðtÞ signals to have larger
values, without mutually synchronizing the transmitter’s
two oscillators. Bayesian inference [8,30,57,58] is applied

to the received signals u and w on the receiver side using
the same polynomial base functions as the right-hand side
of the transmitter model [Eqs. (A1)) and (A2)], with
pw ¼ 0.2 and a window of tw ¼ 25 ms.
The results of the 10-bit binary transmission are dem-

onstrated in Fig. 4. We send four pseudorandom 10-bit
messages m1 ¼ 0110111010, m2 ¼ 1000010101, m3 ¼
1111101010, and m4 ¼ 0100100111. For every message,
we send ten signals s1ðtÞ–s10ðtÞ simultaneously. Therefore,
each signal has a length of four bits, for example,
s10ðtÞ → 0101. The detected signals after transmission
(Fig. 4) indicate that the communication is accurate, with
consistent and precisely detected messages.
Thus, the communication technique is able to transmit

more than one (in this case ten) information signals
simultaneously. This property is very beneficial for any
real application because, inherently, it allows multiplexing
—multiplexing being the conventional method of sharing
an expensive resource by sending multiple information
signals simultaneously [59]. Similarly, in our scheme, as

FIG. 4 Transmission of ten pseudorandom binary signals
encrypted in different coupling functions. The high values (binary
‘1’) at the transmitter, prior to encrypting, are indicated by grey
shading. The received signals, after decrypting, are shown by red
lines, each of which (a-j) represents one information signal siðtÞ.
The particular coupling functions that were used for encrypting
each signal are indicated on the ordinate axis. Each bit is
transmitted during an interval of 0.2 s, and four bits are trans-
mitted in total for each signal e.g., s7ðtÞ → 1010. The information
could correspond either to ten separate serially-encoded mes-
sages, or to a single 10-bit parallel-encoded message, but all of it
is being transmitted simultaneously. The bits are indicated by
m1 −m4 on the top of the figure.
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long as the coupling base functions are linearly indepen-
dent, Bayesian inference is able to separate the simulta-
neously sent signals siðtÞ at the receiver end.
One should note that, for the example in the main text,

we have generalized synchronization [51] within the trans-
mitter (receiver), and not complete synchronization [47].
The latter is also used for the transmission procedure in this
example, and it only applies between the transmitter and the
receiver. The transmission does not have to be exclusively
through complete synchronization. With the use of chaotic
maps, this mode can be avoided or one could use a key
function for coding and decoding the chaotic signals before
and after transmission. The onset of generalized synchro-
nization between the coupled systems within the transmitter
can be excluded totally. In fact, the nonsynchronized case,
where the coupled systems do not form an attractor, is to be
preferred for secure transmission. In such cases, methods of
attack based on attractor properties will fail.
Another important property for practical applications is

the speed of communication. In our framework, this
depends on the time scales of the coupled systems and
the speed of the Bayesian inference. Unlike other statistical
methods (e.g., Granger causality or transfer entropy), which
detect statistical effects, the Bayesian technique infers
dynamical mechanisms and requires substantially less data.
With each sequential block, the Bayesian inference exploits
the dynamical model and the acquired prior knowledge,
allowing the use of smaller blocks of data and better time
resolution. The time scale of the “carrier signal” should, in
general, be longer than the time scales of the information
signals. The relationship between them has to be deter-
mined on a case-by-case basis [60]. For the proposed
communication scheme, however, this does not pose a
problem because the time scales are known a priori.
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