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Abstract: Different machine learning approaches have been developed for the fault 12 

diagnosis of mechanical systems. To achieve desired diagnosis performance, lots of13 

labeled one-dimensional signals are required for training machine learning models.14 

However, those signals collected under various working conditions are difficult to be 15 

used for both diagnosis model training and testing. For real applications, moreover, the 16 

collection of labeled data is more difficult than that of unlabeled ones. To tackle the 17 

above challenging points, a dynamic transfer adversarial learning (DTAL) network is 18 

proposed for dealing with unsupervised fault diagnosis missions. To this end, an 19 

improved feature extractor is developed to deal with one-dimensional mechanical 20 

vibration signals. A dynamic adversarial factor is presented to automatically adapt the21 

marginal distribution of the global domain. The conditional distribution of the local 22 

domain is employed to make the model independent of training multiple classifiers, so as23 

to reduce the computational burden of the proposed method. The addressed DTAL was 24 

evaluated using fault diagnosis experiments for a wind turbine gearbox and benchmark 25 

bearings. Compared with other state-of-the-art methods, it has better accuracy and 26 

robustness as highlighted by experimental results. The developed model can improve the 27 

diagnosis performance under various workloads for mechanical systems. 28 

Keywords: Fault diagnosis; dynamic transfer adversarial learning; one-dimensional 29 

signal; deep learning; transfer learning. 30 
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1. Introduction 32 

As an essential industry pillar, mechanical systems have been widely used in various 33 

scenarios. Due to their long-term operations, machinery aging and failure are inevitable. 34 

As the machinery failure may directly lead to severe economic losses and safety 35 

accidents, it is vital to diagnose faults accurately. 36 

Some advanced methods have been developed for the mechanical fault diagnosis [1]. 37 

Among them machine learning is one of the essential data-driven ways. Such machine 38 

learning methods as deconvolution [2], support vector machine [3], and artificial neural 39 

network [4] have been proven to be reliable for the fault diagnosis. Considering the fact 40 

that there are intense noises in the mechanical signals, deep learning has become a new 41 

trend in the study of fault diagnosis towards powerful feature learning and big data 42 

processing capabilities. Deep neural networks adaptively capture feature information 43 

from original data through multiple nonlinear transformations and approximate complex 44 

nonlinear functions with smaller errors [5]. As essential branches of the deep learning, 45 

deep enhanced fusion network [6], deep residual network [7], generative adversarial 46 

network [8, 9], convolution neural network [10], and recurrent neural network [11] have 47 

been widely used in the fault diagnosis. Although those deep learning methods have 48 

shown strong diagnostic performance, they require a large amount of labeled 49 

one-dimensional signals such as vibration ones for model training. However, it is 50 

challenging and time-consuming to collect a large number of labeled samples in practical 51 

engineering. Besides, the probability distribution of the collected data changes when the 52 

working condition of the mechanical system changes. These factors will inevitably lead 53 

to a severe decline in the model’s diagnosis performance. 54 

To solve those problems, transfer learning or domain adaptation was developed [12]. 55 

The key point of the transfer learning can be used to narrow the data distribution distance 56 

between the source domain and the target domain without the target domain data tag 57 

through the network training. Zhang et al. [13] presented a domain adaptive model based 58 

on convolutional neural network to meet the requirements of fault differentiation and 59 

domain invariance. Han et al. [14] designed an intelligent mechanical failure 60 

classification framework with deep transport network. A jointly distributed adaptation 61 

scheme was used to narrow the difference of data between different domains. Based on 62 
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the supervised transfer learning of the three-layer sparse autoencoder, Wen et al. [15] 63 

proposed a domain adaptive fault diagnosis method by using the maximum average 64 

difference term. Guo et al. [16] presented a deep convolutional transfer learning network 65 

combining condition recognition and domain adaptation. This method can effectively 66 

carry out an unsupervised transfer learning among different mechanical equipment. Li et 67 

al. [17] presented a novel intelligent cross-domain fault diagnosis method for rolling 68 

bearings. Zhang et al. [18] employed a transfer learning method, which can effectively 69 

deal with the big data challenge of faulty samples in data-driven prediction. Xu et al. [19] 70 

proposed a two-stage digital twin-assisted fault diagnosis based on deep transfer learning 71 

to solve the problem of fault diagnosis in complex industrial manufacturing. These 72 

methods have proved that deep learning model can learn more transferable data features 73 

and have a combined transfer model with deep learning to extract domain invariant data 74 

features for fault diagnosis. Moreover, to reduce the distribution discreteness between 75 

different domains, adversarial learning has successfully implemented a migration study 76 

function by combining deep learning networks [20]. Guo et al. [21] proposed a generative 77 

transfer learning method to solve mechanical fault diagnosis problems under different 78 

working conditions. Shao et al. [22] proposed an adaptive method of adversarial domain 79 

based on deep transfer learning. To carry out bearing fault diagnosis under different 80 

working conditions, Zhang et al. [23] presented a new type of deep transfer model, 81 

making use of the property of Wasserstein remote-guided multiple breakthrough network. 82 

She et al. [24] proposed a deep multi-feature adversarial transfer diagnosis method based 83 

on Wasserstein distance to improved diagnostic performance under different working 84 

conditions. Li et al. [25] proposed an adversarial multi-classifier cross-domain fault 85 

diagnosis optimization method to improve the accuracy of fault diagnosis by utilizing the 86 

overfitting phenomenon of different classifiers in adversarial training. Li et al. [26] 87 

designed a deep adversarial transfer learning network by utilizing gradient reversal layer 88 

combined with the idea of antagonistic learning. It can detect new faults and realize 89 

cross-domain learning. Considering not only the difference of edge distribution between 90 

two domains but also the difference of conditional distribution, Jiao et al. [27] designed a 91 

novel unsupervised transfer learning framework, referred to as residual joint adaptive 92 

adversarial network, for the fault diagnosis. This framework can not only learn 93 
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classification discrimination for accurate classification but also bridge the edge 94 

distribution and joint distribution difference for the domain adaptation. Li et al. [28] 95 

proposed an adaptive method in mechanical fault diagnosis based on deep learning. This 96 

method can solve the problem of fault migration between different devices. 97 

Those advanced adaptive methods have achieved outstanding diagnostic 98 

performance in the field of the fault diagnosis. They either use a single domain 99 

discriminator to align the edge distribution (global distribution) between the source 100 

domain and the target domain or use multiple discriminators to match the conditional 101 

distribution (local distribution). Besides, they may also consider edge distribution and 102 

conditional distribution equally important without considering their relative importance. 103 

However, the contribution of marginal distribution (global distribution) and conditional 104 

distribution (local distribution) is often different in the transfer learning [29]. As shown in 105 

Fig. 1, for example, migrating from the source domain to the target domain I indicates 106 

that the two domains are incredibly critical. This means that global distribution is critical. 107 

Migrating from the source domain to the target domain II indicates that the global 108 

distribution is very close. This means that the local distribution should contribute more to 109 

the adaption. Besides, migrating from the source domain to the target domain Ⅲ shows 110 

that the two kinds of probability distribution state of chaos. It does not know the 111 

probability distribution is more critical. 112 

 113 

/***  Insert Figure 1 here  ***/ 114 

 115 

For this reason, this paper proposes a new unsupervised dynamic transfer adversarial 116 

learning (DTAL) network to solve those problem and realize more effective transfer 117 

diagnosis. On the one hand, to our knowledge, this is the first attempt to dynamically 118 

adjust the weight between conditional distribution and edge distribution in the fault 119 

diagnosis community. On the other hand, an improved feature extractor is proposed to 120 

learn characteristics from one-dimensional vibration signals collected from mechanical 121 

systems. Through comprehensive analysis of network visualization and comparison of 122 

experimental results, it shows the superiority and strong stability of this method. 123 

The remaining of this paper is structured as follows. In Section 2, the definition of the 124 
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problem and various structural components of DTAL is detailed. Experiments are 125 

introduced in Section 3. Experimental results and comparisons to peer methods are given 126 

in Section 4. Conclusions are drawn in Section 5. 127 

 128 

2. Methodology 129 

The purpose of the transfer diagnosis for the mechanical systems is to classify 130 

unlabeled target conditions by transferring the trained source domain data. Suppose that 131 

the source domain  has  labeled samples and the target domain 132 

 has  unlabeled samples. Let that label types for the source domain are the 133 

same as those of the target domain, i.e.,  where  is the dimensionality. As the 134 

marginal distributions of the source domain and the target domain are different, i.e., 135 

, the goal of the proposed dynamic transfer adversarial learning (DTAL) is to 136 

design a deep neural network with the function of transfer classifier  to reduce the 137 

distribution distance between the two domains. This deep neural network can achieve 138 

better performance in the target domain by training the labeled source domain and the 139 

unlabeled target domain. The details of the addressed DTAL for the mechanical fault 140 

diagnosis are given in the following subsections. 141 

 142 

2.1. Adversarial principle 143 

Following the way of generative adversarial networks (GANs) [22], this work defines 144 

 as domain discriminator,  as feature extractor, and  as label classifier. The 145 

purpose of training  is to identify the source domain from the target one. On the other 146 

hand, the purpose of training  is to recognize and to extract the invariant features in the 147 

domain. This behavior is used to confuse . In the training process, let ,  and  148 

represent the parameters of , , and , respectively. Since the training processes for 149 

 and  are adversarial,  is obtained by maximizing the loss of  while  is 150 

trained by minimizing the loss of . During this process, the loss of  is also minimized. 151 

Therefore, the loss function L( , , ) can be defined as 152 

 (1) 153 
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where  is the parameter to adjust the loss ratio of ,  represents a logic flag 154 

corresponding to the source domain (0) or the target domain (1),  denotes the loss 155 

function of the feature extractor, and  stands for the loss function of the domain 156 

discriminator. Three parameters , , and  form a solution through the adversarial 157 

training, given by 158 

      (2) 159 

       (3) 160 

 161 

2.2. Network components of DTAL 162 

Existing research has shown that aligning both the marginal and conditional 163 

distributions could produce better result [30]. However, in reality, it is very difficult to 164 

explain the relationship between the marginal distribution and the conditional one due to 165 

their different effects on domain differences. Therefore, dynamic transfer learning 166 

algorithm is presented to solve this problem. This is inspired by manifold embedded 167 

distribution aligndment (MEDA) [31] and dynamic adversarial adaptation network 168 

(DAAN) [32]. MEDA was proposed to solve the problem of edge and conditional 169 

distributions by training linear classifiers in the process of each iteration. Hence, MEDA 170 

algorithm needs a lot of time to complete the training and cannot be applied to large 171 

datasets. On the other hand, DAAN is capable of solving the large dataset problem. 172 

As shown in Fig. 2, the proposed DTAL is based on the DAAN combined with the 173 

idea of MEDA. The basic structure of the DTAL includes a feature extractor, a label 174 

classifier, a global domain discriminator, multiple local domain discriminators, and a 175 

dynamic adversarial factor. All the DTAL components are detailed in the following 176 

subsections. 177 

 178 

/***  Insert Figure 2 here  ***/ 179 

 180 

(1) Feature extractor 181 

As an important component for dynamic transfer learning, the feature extractor  182 

has a big impact on the accuracy of the final classification result. Various classification 183 
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models such as VGGNet [33], GoogleNet [34], and ResNet [35] has been reported in the 184 

in the field of image processing. The feature extractor in this work is inherited from [12] 185 

and is improved in this work by extracting and analyzing the feature information of each 186 

layer in it.  187 

As shown in Fig. 3, the improved feature extractor is composed of six convolution 188 

layers and one fully connected layer. Each convolutional layer carries a MaxPool. The 189 

activation function for the feature extractors is ReLU. The improvements of our feature 190 

extractor are mainly in two aspects: (1) increase the convolution kernel size of the first 191 

convolutional layer; and (2) remove AdaptiveMaxPool and increase the number of 192 

MaxPool, to accommodate one-dimensional signals for the mechanical fault diagnosis. 193 

 194 

/***  Insert Figure 3 here  ***/ 195 

 196 

The effect of convolutional neural network (CNN) on one-dimensional vibration 197 

signal in the field of fault diagnosis differs from that of two-dimensional image data in 198 

the field of image [36]. For a 224×224 image in ImageNet [37], although the 199 

two-dimensional image performs well under the action of the 3×3 convolution kernel of 200 

VGGNet [33], for a 2048×1 one-dimensional vibration signal, it is unrealistic to use 3 × 1 201 

convolution kernel. If only 3×1 convolution kernel is used in the diagnosis model, the 202 

network structure will be too deep, the calculation cost will be increased, and the feature 203 

extraction process will be easily interfered by the common high-frequency noise in the 204 

industrial environment. Therefore, to obtain useful information in the low frequency 205 

range of the mechanical vibration signal, a 64×1 wide convolution kernel is first used to 206 

extract features in the first convolution layer, and then a continuous 3×1 small 207 

convolution kernel is presented to obtain better feature representation. On the other hand, 208 

the standard feature extractor given by [12] has defects in using the AdaptiveMaxPool 209 

layer in the last convolutional layer. Assuming the shape of the input data is [50, 1, 1024], 210 

the shape before the AdaptiveMaxPool of the original model is [50, 128, 500], and the 211 

shape after AdaptiveMaxPool is [50, 128, 4]. Excessive pooling power leads to too much 212 

loss of information. This is not conducive to feature extraction. The AdaptiveMaxPool 213 

used in [12] is only suitable for datasets with small data shapes. Therefore, on the basis of 214 
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the original model, we use the MaxPool layer with parameter kernel_size = 2, stride = 2 215 

(the parameter name is the same as the name in PyTorch) for each layer of convolutional 216 

layer to pool it, ensuring that in the feature extraction process, valid feature information 217 

will not be lost in large amounts. 218 

(2) Label classifier 219 

The function of the label classifier  proposed as shown in Fig. 2 is to classify labels 220 

after training the labeled samples in the source domain. In this work, the loss function used 221 

by the label classifier is a cross-entropy loss function described as 222 

      (4) 223 

where  is the probability that  belongs to the -th category. 224 

(3) Global domain discriminator 225 

As shown in Fig. 2, the function of the global domain discriminator  is to align the 226 

global distribution of both the source domain and the target domain. The loss function of 227 

 is defined as 228 

      (5) 229 

where  is the domain label of the input sample . 230 

(4) Local domain discriminator 231 

Local domain discriminator  is proposed to align the conditional distribution of the 232 

source domain and the target domain. Because it is more aligned than the global domain 233 

discriminator, there are many patterns of distributions. It can adapt the domain in more 234 

fine-grained way. In a nutshell, C categories of the domain discriminator  can constitute 235 

a global domain discriminator. Each local domain discriminator is responsible for the 236 

domain classification of its corresponding class. The loss function of the local domain 237 

discriminator is formulated as 238 

    (6) 239 

where  is a cross entropy loss function associated with class ,  is the predicted 240 

probability distribution over the class c of the input sample , and  is the prediction 241 

domain label or domain label of the input sample . 242 
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(5) Dynamic adversarial factor 243 

In this work, a simple yet effective way is proposed to obtain dynamic adversarial 244 

factor . At first, the global domain distribution is regarded as the marginal distribution, 245 

and the local domain distribution is regarded as the conditional distribution. The weights of 246 

the two distributions are obtained using proxy A-distance [38]. In this way, the global 247 

A-distance dA,g(Ds, Dt) and local A-distance dA,l(Dsc, Dtc) are defined as 248 

        (7) 249 

        (8) 250 

By calculating the global distance and local distance, one can finally obtain  as 251 

        (9) 252 

Compared with MEDA, the above equation does not need to train multiple classifiers. The 253 

computation burden for obtaining  in this work is much less than MEDA. 254 

The initial value of  is set as 1 in the first epoch. After each epoch, the label 255 

classifier will assign a prediction label to each sample in the target domain. The local 256 

distance of each c class is therefore calculated by 257 

           (10) 258 

where  is the predicted value of the output of the class C domain discriminator. 259 

 is the real domain label, where  and , i.e., the source 260 

domain label is 0 and the target domain label is 1. 261 

 262 

2.3. Development of DTAL for the mechanical fault diagnosis 263 

With all the aforementioned network components, the overall loss functions can be 264 

given by combining different component loss functions as 265 

           (11) 266 

where the proportion of the common influence of  and  on the overall loss function 267 

can be adjusted by . Although  is also a hyperparameter, it can be calculated by the 268 

neural network itself. When  approaches 0, however, the global distribution alignment 269 

is the domination (Target I as shown in Fig. 1). When  approaches 1, on the other hand, 270 

the local subdomain distribution of categories is the domination (Target II as shown in 271 
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Fig. 1). 272 

For real applications, the marginal and conditional distributions are not pre-defined. 273 

Through dynamic adversarial factor , our DTAL network can adapt to different 274 

working conditions for dealing with the fault diagnosis tasks. In the network training, 275 

parameters to be transferred are defined as . The gradient of the 276 

overall loss function is therefore given by 277 

           (12)  278 

With this transfer learning procedure, overall steps of the present DTAL for the 279 

machinery fault diagnosis are given in Fig. 3 and are detailed as below. 280 

Step 1: Collect raw signals from sensors installed on the mechanical system. 281 

Step 2: Divide the collected data into source domain data and target domain ones 282 

under different working conditions of the machinery. 283 

Step 3: Construct the feature extractor, label classifier, global domain discriminator 284 

and local domain discriminator using equations illustrated in the subsection 2.2. 285 

Step 4: Use the source domain datasets for pre-training the model. 286 

Step 5: Unlabeled target domain datasets and labeled source domain dataset are 287 

employed for the model transferring. The trained model is employed for the fault diagnosis. 288 

End. 289 

 290 

/***  Insert Figure 4 here  ***/ 291 

 292 

3. Experiments 293 

Two fault diagnosis experiments were carried out for evaluating the present DTAL 294 

model. This first case was from our wind turbine diagnosis experiment, and the second one 295 

was from a benchmark experimental dataset. As different experiments have different 296 

degrees of difficulty in terms of the mechanical fault diagnosis, these two experiments can 297 

comprehensively explore the effectiveness and stability of the proposed method. 298 

 299 

3.1. Experimental configurations 300 

The first experiment was carry out to diagnose the health condition of a wind turbine. 301 
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As shown in Fig. 5, a wind turbine (RCVA-3000) was driven by a wind blower to generate 302 

electricity through the transmission of a gearbox. Three accelerometers were installed on 303 

the gearbox housing to collect vibration signals at the sampling frequency of 100 kHz.  304 

 305 

/***  Insert Figure 5 here  ***/ 306 

 307 

The gearbox of the wind turbine consisting of a sun gear, a ring gear, and three 308 

planetary gears are also shown in Fig. 5. Different faults were pre-planted to the gearbox as 309 

shown in Table 1. A total of six conditions with one healthy and 5 different fault patterns 310 

were employed in the experiment. By changing the working load of the wind turbine (and 311 

hence the gearbox), the dataset consists of three different operating conditions (workloads 312 

1, 2 and 3). In this way, six transfer learning setups can be obtained through permutation 313 

and combination for the dataset collected in this experiment. 314 

 315 

/***  Insert Table 1 here  ***/ 316 

 317 

In addition to the fault diagnosis for a wind turbine, a benchmark dataset was 318 

employed in the second experiment to validate the effectiveness of the present method. 319 

This benchmark dataset was from the public bearing fault diagnosis dataset of Paderborn 320 

University [39], collected from a bearing test rig consisting of an electric motor, a torque 321 

measurement shaft, a rolling bearing, a flywheel and a load motor. Vibration signals were 322 

collected by an accelerometer attached to the bearing housing with the sampling frequency 323 

64 kHz. Bearing faults are classified into 13 categories according to the location, degree, 324 

combination, and characteristics of bearing damage. Four different bearing operating 325 

conditions, generated by various combinations of two different rotary speeds, two different 326 

load torques and two different radial forces, were applied in this experiment. To study 327 

transfer learning tasks, there were 13 classes of bearing faults under 4 different operating 328 

conditions to be diagnosed. For transfer tasks, task 0 to task 1 (denoted by “0-1”) means 329 

that the data of source domain were collected under the working conditions with rotation 330 

speed 1500 rpm, load torque 0.7 Nm and radial force 1000 N, and the data of the source 331 

domain and the target domain were collected under the working conditions with rotary 332 
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speed 900 rpm, load torque 0.7 Nm and radial force 1000 N. In total, 12 transfer tasks can 333 

be set for the benchmark dataset. 334 

 335 

3.2. Data processing and parametric settings 336 

In the experiments, original vibration signals of the two datasets, i.e., wind turbine 337 

dataset and benchmark dataset, were collected at sample frequencies of 100kHz and 64kHz, 338 

respectively. To reduce the computational burden, the wind turbine dataset was 339 

down-sampled from 100kHz to 25kHz. Original signals of all datasets were divided into 340 

1024 samples without any overlapping and were sent directly to the model input layer as 341 

time-domain data. There were 2880 samples collected from the wind turbine gearbox 342 

experiment (6 classes each of which had 480 samples), and 6240 samples from the 343 

benchmark bearing experiment (13 classes each of which had 480 samples). A z-score 344 

normalization was used to keep the input dataset  in a certain range, 345 

depicted as 346 

      (13) 347 

where  and  are the mean value and the standard deviation of x, respectively.  348 

To avoid the test leakage, 80% of total samples without any overlapping were 349 

regarded as the training set, and the remaining samples as the test set in the source and the 350 

target domains, respectively. This is illustrated in Fig. 6. 351 

 352 

/***  Insert Figure 6 here  ***/ 353 

 354 

For each experiment, the training set was fed to DTAL. Only samples from the source 355 

domain were used to train the model. The trained model was directly applied to test the 356 

samples of target domains. That means that no samples of target domains participated in 357 

the model training, while the source and target domains shared the same model structure 358 

and parameter settings. Network structure parameters of the improved feature extractor in 359 

the developed DTAL used in the experiments are listed in Table 2. The label classifier is 360 

specified in Table 3, and the network structure parameters of the global domain 361 

discriminator and local domain discriminator are given in Table 4.  362 
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 363 

/***  Insert Table 2 here  ***/ 364 

 365 

/***  Insert Table 3 here  ***/ 366 

 367 

/***  Insert Table 4 here  ***/ 368 

 369 

3.3. Comparison methods 370 

To demonstrate a comprehensive performance evaluation for the proposed DTAL 371 

method, several state-of-the-art deep unsupervised domain adaptation methods, including 372 

adaptive batch normalization (AdaBN) [40], multi kernels maximum mean discrepancy 373 

(MK-MMD) [41], joint maximum mean discrepancy (JMMD) [30], domain adversarial 374 

neural network (DANN) [42], conditional domain adversarial network (CDAN) [43] and 375 

source domain convolutional neural network (SCNN). To highlight the performance of the 376 

improved feature extractor, an original feature extractor as introduced in Ref. [12] was 377 

used to replace the improved feature extractor of the DTAL. This was named as DTAL with 378 

standard feature extractor (DTAL-SFE). 379 

For the comparison methods, each of them is composed of a feature extractor and its 380 

corresponding migration method, with its structure and parameter settings same as those in 381 

its related literature. Besides, a basic method (Basis) was constructed by combining feature 382 

extractor and the label classifier to make an evaluation benchmark. Then, only samples 383 

from the source domain were used to train the model. Please note that the improved feature 384 

extractor is not used in comparison methods All the training and testing data for the 385 

comparison methods were the same as the experimental data for DTAL. 386 

All the above mentioned fault diagnosis methods were realized on PyTorch 387 

framework [44]. To make the experimental results more reasonable, the feature extractor 388 

structures of all methods were set as the same. During the training process, the mini-batch 389 

stochastic gradient descent (SGD) with momentum of 0.9 and batch size of 32 were taken 390 

as an optimization scheme for the backpropagation. Each experiment related to all methods 391 

was trained for 200 epochs. In the first 50 epochs they were pre-trained only with source 392 

samples. The initial learning rate was set as 0.01 with a decay (multiplied by 0.1) in the 393 
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epoch 150. All experiments were carried out under Ubuntu 16.04 and PyTorch 1.3 running 394 

on a computer with an Intel Xeon E5-2620 v4, TITAN Xp, and 12GRAM. Classification 395 

accuracy on test dataset shown in Eq. (1) was used as the evaluation metric, which was 396 

widely used in [45-47] The label of the target domain was only used in the test stage. To 397 

reduce the randomness, each experimental result was the average classification accuracy of 398 

five experiments for each method. 399 

       (14) 400 

 401 

4. Results and discussion 402 

 403 

4.1. Fault diagnosis results 404 

The fault diagnosis results of the proposed method and the comparison ones for the 405 

wind turbine gearbox experiment are listed in Table 5. For all the transfer tasks, the present 406 

DTAL has the best performance. Moreover, DTAL-SFE model that uses the original 407 

feature extractor is compared with other methods. For the first three transfer tasks, 408 

DTAL-SFE are better than other methods. Although the latter three transfer tasks donot 409 

get the first place, they are all acceptable. The first JMMD model has higher accuracy in 410 

the last three transfer tasks, but has a large deviation compared with the accuracy of the 411 

first three transfer tasks. The average accuracy of DTAL-SFE is also higher than that of 412 

models other than the DTAL model. This shows that the present dynamic transfer 413 

adversarial network (even if without the improved feature extractor) can obtain better 414 

fault diagnosis performance and strong robustness. In addition, the improved feature 415 

extractor can further improve the fault diagnosis accuracy. 416 

 417 

/***  Insert Table 5 here  ***/ 418 

 419 

The fault diagnosis results of the proposed method and the comparison ones for the 420 

benchmark bearing experiment are listed in Table 6. Once again, the best performance was 421 

achieve by the proposed DTAL method. Compared to DTAL-SFE, DTAL has the least 422 

accuracy increase of 6.32% (transfer task 0-2), the maximum accuracy increase 39.74% 423 
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(transfer task 1-2), and the average accuracy increases 25.15%. This also further indicates 424 

the improved feature extractor can improve diagnostic performance. 425 

 426 

/***  Insert Table 6 here  ***/ 427 

 428 

As can be seen from Tables 5 and 6, the best two models in the experiments are 429 

DTAL and DTAL-SFE, followed by JMMD and CDAN. The good diagnostic 430 

performance of JMMD and CDAN is mainly due to the fact that they all consider the 431 

edge distribution and conditional distribution between the source and target domains with 432 

the same weight. This demonstrates that both edge distribution and conditional 433 

distribution can have a significant impact on diagnostic performance in the transfer 434 

learning. Our method has the best diagnosis accuracy mainly because of the dynamic 435 

factors dynamically adjusting the weight between the edge distribution and the condition 436 

distribution. This can be more suitable for mechanical fault diagnosis under different 437 

working conditions in practical engineering. The results of two experiments demonstrate 438 

that the proposed method has strong diagnosability and generality for the mechanical 439 

fault diagnosis. 440 

 441 

4.2. Discussion on the improved feature extractor 442 

The feature extractor is an important part of the intelligent fault diagnosis model. Its 443 

function is to extract features of the dataset for the lower network. It plays a great role in 444 

the accuracy of the final model output. To further demonstrate the advantages, the 445 

proposed improved feature extractor was compared with the original feature extractor [12] 446 

in two aspects: (1) The proposed method and the compared methods both use the improved 447 

feature extractor to carry out the diagnosis experiment on the gearbox data set; and (2) In 448 

the experiment of bearing data set diagnosis, the feature maps of each layer of the original 449 

feature extractor and the improved feature extractor are visualized and compared. In this 450 

subsection, the improved feature extractor was used to replace the original one. The 451 

compassion methods are therefore named as SCNN-IFE, AdaBN-IFE, MK-MMD-IFE, 452 

JMMD-IFE, DANN-IFE, and CDAN-IFE, respectively. 453 

Table 7 shows the fault diagnosis results of the present DTAL and the comparison 454 
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methods for the wind turbine gearbox. As illustrated by the mean value of the diagnostic 455 

accuracies, all methods have good results, and the best one is still DTAL. By comparing 456 

with the diagnosis results in Table 5, it is found that the improved feature extractor has a 457 

great improvement compared to the initial feature extractor. This proves that the present 458 

improved feature extractor can be applied to all methods, and has a certain degree of 459 

stability and versatility. 460 

 461 

/***  Insert Table 7 here  ***/ 462 

 463 

In addition to the quantitative evaluation as shown in the above table, a visualized 464 

comparison was performed using the benchmark bearing dataset. Under the premise of the 465 

bearing dataset and the transfer learning task (source domain 0 to transfer to target domain 466 

3), the output between the original feature extractor and each layer of the feature extractor 467 

are shown in two-dimensional clustering diagrams as show in Fig. 7, where ‘×’ represents 468 

the data of the target domain, and ‘·’ represents the data of the source domain.  469 

Figs. 7 (a)-(h) indicate the clustering results from the MaxPool1d layer of Layer 1, 470 

the MaxPool1d layer of the Layer 2, the MaxPool1d layer of Layer 3, the MaxPool1d 471 

layer of Layer 4, Layer 5 of the improved feature extraction layer, the MaxPool1d layer 472 

of Layer 6, the Linear layer of Layer 7, and the Linear layer of the source_fc layer, 473 

respectively. On the contrary, the clustering results for the initial feature extractor are 474 

shown in Fig. 7 (i)-(o), respectively. Details for the initial feature extractor are available 475 

in Ref. [12]. Comparing the two extractors indicates that the improved feature extractor 476 

has better clustering performance. 477 

 478 

/***  Insert Figure 7 here  ***/ 479 

 480 

5. Conclusions 481 

In this paper, a dynamic transfer adversarial learning (DTAL) has been reported to 482 

dealing with mechanical fault diagnosis. Dynamic network structure and improved feature 483 

extraction were combined to overcome the transfer problem of different data distributions 484 

between the source domain and the target domain, so as to obtain better diagnostic 485 
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performance for mechanical fault diagnosis under different working conditions. Two 486 

typical mechanical systems, i.e., a wind turbine gearbox and a bearing benchmark, were 487 

employed to validate the effectiveness of the present DTAL method. The improved feature 488 

extraction approach was compared to the standard feature extractor using different 489 

experimental data. Thanks to the improved feature extractor, the diagnosis accuracy of all 490 

the methods has been significantly improved, which shows that the improved feature 491 

extractor is effective and stable for one-dimensional vibration signal processing in the 492 

mechanical fault diagnosis. The suggested DTAL was compared to some state-of-the-art 493 

peer methods. On the basis of systematic comparative study, DTAL shows the best 494 

performance for all the experiments. There are two main contributions in this paper. On the 495 

one hand, a new type of unsupervised dynamic adaptive adversarial network for intelligent 496 

fault diagnosis was proposed. On the other hand, an improved feature extraction approach 497 

was developed to dealing with one-dimensional vibration signals collected from the 498 

mechanical systems for the fault diagnosis. 499 
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Table 1. Conditions set in the fault diagnosis experiment for the wind turbine gearbox. 

Pattern No. Fault location Degree of failure Label 

C0 Ring gear Missing tooth 1 

C1 Ring gear Crack tooth 2 

C2 Sun gear Missing tooth 3 

C3 Planetary gear Crack tooth 4 

C4 Planetary gear Missing tooth 5 

C5 Normal Normal (no failure) 6 
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Table 2. Network structure parameters of the improved feature extractor in DTAL. 

Layers Category Parameters Activation 

1 
Conv1d OC=16, KS=64, S=1, PAD=32 

RL 
MaxPool1d KS=2, S=2, PAD=0 

2 
Conv1d OC=32, KS=3, S=1, PAD=1 

RL 
MaxPool1d KS=2, S=2, PAD=0 

3 
Conv1d OC=64, KS=3, S=1, PAD=1 

RL 
MaxPool1d KS=2, S=2, PAD=0 

4 
Conv1d OC=64, KS=3, S=1, PAD=1 

RL 
MaxPool1d KS=2, S=2, PAD=0 

5 
Conv1d OC=64, KS=3, S=1, PAD=1 

RL 
MaxPool1d KS=2, S=2, PAD=0 

6 
Conv1d OC=128, KS=3, S=1, PAD=1 

RL 
MaxPool1d KS=2, S=2, PAD=0 

7 linear IF=2048, OF=256 RL 

Remarks: OC- out_channels; KS- kernel_size; S- stride; PAD- padding; OS- 

output_size; IF- in_features; OF- out_features; and RL- ReLU. 
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Table 3. Network structure parameters of the label classifier in DTAL. 

Layers Category Parameters Activation 

Source_fc linear IF=256, OF=number of dataset categories SM 

Remarks: IF- in_features; OF- out_features; and SM- SoftMax. 
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Table 4. Network structure parameters of the global domain discriminator and local 

domain discriminator in DTAL. 

Layers Category Parameters Activation 

layer1 
Linear IF=256, OF=1024 

RL 
Dropout p=0.5 

layer2 
Linear IF=1024, OF=1024 

RL 
Dropout p=0.5 

layer3 Linear IF=1024, OF=2 SM 

Remarks: IF- in_features; OF- out_features; RL- ReLU; and SM- SoftMax. 
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Table 5. Fault diagnosis accuracies of different methods for the wind turbine gearbox 

experiment (%) 

Transfer tasks 0-1 0-2 1-0 1-0 2-0 1-0 Mean 

DTAL 70.14 66.01 69.93 76.94 71.56 79.76 72.39 

DTAL-SFE 68.09 62.5 67.74 69.97 55.76 62.88 64.49 

SCNN 48.11 50.4 53.91 65.52 47.13 63.84 54.82 

AdaBN 56.36 53.28 53.86 69.67 50.57 56.98 56.79 

MK-MMD 46.22 50.56 58.65 69.76 63.26 78.37 61.13 

JMMD 48.37 49.41 59.86 73.09 70.8 79.44 63.5 

DANN 42.12 42.99 60.24 71.25 67.5 77.71 60.3 

CDAN 50.94 47.92 62.88 72.99 68.44 78.3 63.58 
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Table 6. Fault diagnosis accuracies of different methods for the benchmark bearing 

experiment (%) 
Transfer tasks 0-1 0-2 0-3 1-0 1-2 1-3 2-0 2-1 2-3 3-0 3-1 3-2 Mean 

DTAL 67.08 97.07 85.48 83.03 84.68 63.14 96.25 70.26 86.25 83.25 52.31 89.39 79.85 

DTAL-SFE 46.35 90.75 57.45 43.75 44.94 34.07 88.56 43.46 60.79 54.9 34.6 56.73 54.7 

SCNN 14.52 88.63 35.39 27.18 29.87 17.91 87.14 14.32 43.93 36.87 23.53 36.06 37.95 

AdaBN 19.06 89.24 41.79 28.02 33.57 23.21 86.86 17.88 46.05 40.36 26.27 39.2 40.96 

MK-MMD 34.21 83.93 40.24 40.82 39.55 28.81 82.05 36.51 40.82 50.43 26.3 53.57 46.44 

JMMD 38.86 85.19 47 41.12 44.23 29.29 82.15 39.15 46.49 54.7 30.45 57.44 49.67 

DANN 35.96 84.05 39.71 41.75 36.84 32.24 81.43 40.67 42.28 51.84 30.98 54.41 47.68 

CDAN 36.07 85.61 51.86 41.38 45.16 35.43 83.54 38.91 49.98 54.05 32.07 58.14 51.02 
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Table 7. Fault diagnosis accuracies of different methods (all with the improved 

feature extractor) for the wind turbine gearbox experiment (%) 

Transfer tasks 0-1 0-2 1-0 1-0 2-0 1-0 Mean 

DTAL 70.14 66.01 69.93 76.94 71.56 79.76 72.39 

SCNN-IFE 59.56 52.94 62.63 73.69 55.91 80.74 64.24 

AdaBN-IFE 63.49 57.43 63.98 73.28 62.26 80.41 66.81 

MK-MMD-IFE 51.32 55.66 62.12 74.86 63.99 80.73 64.78 

JMMD-IFE 53.02 59.83 61.7 72.05 64.37 78.09 64.84 

DANN-IFE 59.2 63.89 66.39 74.13 67.12 79.51 68.37 

CDAN-IFE 59.48 64.86 65.31 76.04 66.22 82.57 69.08 
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Fig. 1. Different influences of marginal and conditional distributions on transfer 

learning, where P(x, y) denotes the distribution of the two domains. 
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Fig. 2. Adversarial principle of the present DTAL. 



Pre
pr

in
t

33 

 

 
Fig. 3. The structure of the improved feature extractor. 
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Fig. 4. Schematic of the proposed method. 
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Fig. 5. Wind turbine experimental setup. 
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Fig. 6. Data splitting for all diagnosis scenarios. 



Pre
pr

in
t

37 

 

 
Fig. 7. Two-dimensional clustering diagrams of the data output of the DTAL: (a)-(h) 

with the improved feature extraction layer; and (i)-(o) with the original feature extraction 

layer. 
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