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Abstract

We introduce non-Markovian SIR epidemic spreading model inspired by the characteristics of the COVID-19, by
considering discrete- and continuous-time versions. The incubation period, delayed infectiousness and the distribution
of the recovery period are modeled with general functions. By taking corresponding choice of these functions, it is
shown that the model reduces to the classical Markovian case. The epidemic threshold is analytically determined
for arbitrary functions of infectivity and recovery and verified numerically. The relevance of the model is shown by
modeling the first wave of the epidemic in Italy, in the spring, 2020.

1 Introduction
The ongoing pandemics of COVID-19, has claimed millions of human lives, caused stagnation of the global economy
and excessive load on the healthcare systems throughout the world and changed the normal life. Mathematical models
of epidemic spreading are important tools for predicting the effects that the pandemics can have on each segment
of the society. They provide support for policy-makers to make adequate decisions in order to partially mitigate
the consequences by planning various social distancing measures, preparation of healthcare facilities and appropriate
adaptation of the economy.

The spectrum of mathematical models applied for the COVID-19 pandemic ranges from the simplest SIR to rather
complex SIDARTHE [3, 7, 8, 19, 26], which are used for assessment of different aspects of the epidemics. One of
the major features of these models is their Markovian nature, which considers transitions from one state to another
to be independent on the past. As an example, when Markovian property is assumed to hold, an individual that
has just become infected can proceed to recovered state with the same probability as another one which has been
infected for longer period. This Markovian assumption, encapsulated in constant transition probabilities, or rates,
makes the models easier to study analytically. The outcomes of these studies with Markovian approach offer some,
and in certain instances satisfactory, assessment of the spreading dynamics. However, growing body of evidence,
particularly for the COVID-19, suggests existence of incubation period and certain infectivity patterns, with possibility
for spreading the pathogen before onset of the symptoms, to which correspond functions that are rather distinct from
the exponential distribution which the Markovian models rely on [16,17]. Although adding one or more compartments
for the Exposed, Asymptomatic, Presymptomatic, or Quarantined persons or considering various kinds of delay [4,
12, 20] address such observations to certain extent, they cannot systematically incorporate the observed distributions
of the incubation period and the healing process.
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There are different approaches of non-Markovian modeling of epidemic processes. In one attempt [1] is proposed
Gillespie algorithm as an adequate tool for numerical analysis of non-Markovian spreading models. The effects
of the form of distribution of infection and curing (recovery) times on SIS epidemic model occurring on complex
networks in continuous time has been analyzed in several studies [6,10,11,22,24,25]. With the introduction of SI*V*
model [13] it was suggested that non-Markovian spreading models have capacity to be extended to cover a wide variety
of spreading sub-models and variants. Nontrivial distribution of infectious period in an integro-differential SIR model
was considered in [18]. In a recent study, non-Markovian SIS model on complex networks, with arbitrary function
for infectivity and recovery was proposed [23], in which control theory was successfully applied for determination
of epidemic threshold. Our approach adds to these pioneering contributions by providing general framework for
incorporation of various distributions of infectivity and healing in a SIR model. By similar approach as in [23]
we show how these functions determine the epidemic threshold. The relevance of the model, besides by numerical
simulations, is verified by fitting to the observations of the first wave of the epidemic in Italy, in the spring, 2020.

The paper is organized as follows. After providing initial setting of the model in Section 2, we introduce the
discrete-time and continuous-time models in Sections 3 and 4, respectively, where we also derive the epidemic thresh-
old relationships. The reduction to Markovian case of the model is presented in Section 5, while numerical simulations
and discussions are given in Section 6. The paper concludes with Section 7.

2 Preliminaries
We consider SIR model that has three compartments: Susceptible - S, Infected - I and Recovered - R, with the usual
transition S→ I→ R. Let the corresponding variables S, I and R denote the fractions of the population that are in the
given state, and under assumption without births and deaths, one has the normalization condition S(t)+ I(t)+R(t) = 1
at each moment t. To capture the nontrivial dependence of the healing period and the different contagiousness of
the infected individual in different stages of the disease we introduce two functions. The infectivity function β (τ)
captures the rate, or probability at which individuals that became infected before time τ are spreading the disease to
the susceptible ones. Thus, by simply taking β (τ) = 0 for τ < T0, one is able to introduce incubation period with length
T0. Another important function is the healing function γ(τ) that denotes the probability with which individual can heal
at moment τ after contracting the disease. To account for asymptomatic transmitters and existence of certain time
window when presence of pathogen can be confirmed, one can introduce a reporting function ρ(τ). It is associated
to the probability that the presence of the pathogen can be confirmed at moment τ after contraction with it. The
asymptomatic cases are conveniently handled by normalizing the reporting function to value smaller than unity. We
pursue by considering discrete- and continuous-time models separately, and provide more details about these functions.

3 Discrete-time version
In this section we consider evolution in discrete time t and denote the fraction of individuals that have become infected
within the continuous-time interval [t−1, t] with Id(t), where for simplicity the unit interval is taken to be 1. This can
be relevant for situations like those when cases are considered on daily basis. In such scenario, we have discrete-time
healing function γ(τ) and infectivity one β (τ), on which we put the constraint β (0) = 0. The probability that the
individual will heal within τ time units is Γ(τ) = ∑

τ
ν=0 γ(τ). We further assume finite duration T of the disease, what

implies Γ(T ) = 1 and for practical reasons introduce its complement Γ(τ) = 1−Γ(τ), to denote the probability that
individual has not healed yet for τ time units. The function γ(τ) also has a meaning of fraction of individuals that have
contracted the disease within the same unit time interval, to become healed later within another unit interval [τ−1,τ].
Similar reasoning holds for the cumulative functions Γ(τ) and Γ(τ). On base on the classical SIR model, the proposed
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model of evolution of the compartments is given with the system

S(t +1) = S(t)

[
1−

T−1

∑
τ=0

β (τ)Γ(τ)Id(t− τ)

]

Id(t +1) = S(t)
T−1

∑
τ=0

β (τ)Γ(τ)Id(t− τ)

R(t +1) = R(t)+
T−1

∑
τ=0

γ(τ)Id(t +1− τ). (1)

One can note that the infected individuals that have contracted the pathogen up to T periods before the current
moment t, and which are not healed yet, can contribute to spreading of the disease, with appropriate intensity captured
in the function β (τ). We note that in order to determine the infected fraction at given moment, one should sum those
infected in the past, but did not heal up to the given moment

I(t) =
T−1

∑
τ=0

Id(t− τ)Γ(τ). (2)

To make the problem completely defined one has to specify the initial conditions for Id(t). We assume that they
are given for τ = T − 1,T − 2, . . . ,0. In general this model cannot be solved analytically and should be studied by
application of numerical simulations.

To get insight of the conditions when epidemic can emerge, one can determine the stability of the disease free state
S∗ = 1, I∗ = I∗d = R∗ = 0, that is an equilibrium point of the system. Its local stability is established by linearizing the
dynamical equations (1) in its neighborhood. By making the linearization in vicinity of S∗ = 1, I∗ = R∗ = 0, one can
observe the dynamical evolution of the perturbations δS = S−S∗,δ Id = Id− I∗d ,δR = R−R∗. Under linearization, the
perturbations are related with

δS(t +1) = δS(t)−
T−1

∑
τ=0

β (τ)Γ(τ)δ Id(t− τ),

δ Id(t +1) =
T−1

∑
τ=0

β (τ)Γ(τ)δ Id(t− τ),

δR(t +1) = δR(t)+
T−1

∑
τ=0

γ(τ)δ Id(t +1− τ). (3)

Let us focus on the infected fraction and make Z-transform on the second equation in (3). To do so, multiply first
both sides of that equation by z−t and sum to obtain

∞

∑
t=0

δ Id(t +1)z−t =
∞

∑
t=0

T−1

∑
τ=0

β (τ)Γ(τ)δ Id(t− τ)z−t . (4)

By using the Z-transform of the fraction of the population that become infected at unit interval Id(t), given as I (z) =
∑

∞
t=0 Id(t)z−t , the left hand side of (4) will become

∞

∑
t=0

δ Id(t +1)z−t = z
∞

∑
t=0

δ Id(t +1)z−(t+1) = z [I (z)−δ Id(0)] . (5)

Accordingly, the right-hand side of (4) can be rearranged as

∞

∑
t=0

T−1

∑
τ=0

β (τ)Γ(τ)δ Id(t− τ)z−t =
T−1

∑
τ=0

β (τ)Γ(τ)z−τ
∞

∑
t=0

δ Id(t− τ)z−(t−τ). (6)
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By using substitution ν = t− τ , the last sum for τ ≤−1 can be expressed as

∞

∑
ν=−τ

δ Id(ν)z−ν =
−1

∑
ν=−τ

δ Id(ν)z−ν +I (z) = I0(τ,z)+I (z), (7)

where we have introduced a function I0(τ,z) that corresponds to the initial conditions. Now, combining the relation-
ships (5) – (7) one has

z [I (z)−δ Id(0)] =
T−1

∑
τ=0

β (τ)Γ(τ) [I0(τ,z)+I (z)]z−τ . (8)

To shorten the notation, one can introduce the following two complex functions

E (z) =
T−1

∑
τ=0

β (τ)Γ(τ)z−τ ,

E0(z) =
T−1

∑
τ=0

β (τ)Γ(τ)I0(τ,z)z−τ . (9)

The first one is simply the Z-transform E (z) of what might be called epidemic function E(τ) = β (τ)Γ(τ), that is
a combination of the infecting and healing functions because ∑

T−1
τ=0 β (τ)Γ(τ)z−τ = ∑

∞
τ=0 β (τ)Γ(τ)z−τ . The second

complex function E0(z) is related to the initial conditions. Now, one has the following relationship

z [I (z)−δ Id(0)] = I (z)E (z)+E0(z), (10)

from where

I (z) =
zδ Id(0)+E0(z)

z−E (z)
. (11)

From a result in theory of discrete linear time-invariant systems, a sequence (the impulse response of such system) is
decaying if the poles of its Z-transform are within the unit circle [14]. Thus, when the poles of the function I (z) of
the complex function (11), or the roots of the polynomial z−E (z) lie within the unit circle, the perturbation dies out
at infinity. So, the epidemic threshold can be obtained by taking z = 1 in the denominator in (11), that results in

T−1

∑
τ=0

β (τ)Γ(τ) = 1, (12)

which obviously depends on the functional forms of the infectivity and healing functions.
We should finally note that any initial infection would not shift back the population to the disease-free state S =

1, I = R = 0, but to some endemic S∗e , I
∗
e = 0,R∗e = 1−S∗. However, if the conditions are not favoring epidemic both

equilibria will be rather close S∗e ≈ 1.

4 Continuous-time version
We will pursue similarly to the discrete-time approach, where the fractions of individuals within given compartment
and the functions modeling the infectivity, healing and reporting are defined for continuous time t and we use the same
notation. Thus, S(t) is the fraction of susceptible individuals at given moment t and R(t) corresponds to the recovered
and again assume finite healing period T . The fraction of infected individuals is conveniently modeled with the rate
of infection, or the fraction of newly infected individuals Id(t) within the infinitesimal interval (t− dt, t). The total
fraction of infected persons is given with the integral

I(t) =
∫ T

0
Id(t− τ)Γ(τ)dτ, (13)
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which accounts for those that had become infected in the past and have not healed yet. Now, the dynamical evolution
of the respective fractions is given with

Ṡ = −S(t)
∫ T

0
β (τ)Γ(τ)Id(t− τ)dτ

Id(t) = S(t)
∫ T

0
β (τ)Γ(τ)Id(t− τ)dτ

Ṙ =
∫ T

0
γ(τ)Id(t− τ)dτ. (14)

In order to determine whether the initial perturbation will grow to epidemics, one could focus on the second equation
in the vicinity of the disease-free state S∗ = 1,R∗ = I∗ = 0. Then, the perturbation of newly infected individuals will
evolve as

δ Id(t) =
∫ T

0
β (τ)Γ(τ)δ Id(t− τ)dτ, (15)

where it is assumed that in vicinity of the disease-free state S(t)≈ 1. Now, make Laplace transform of the perturbation
of the rate of infection, I (s) =

∫
∞

0 δ Id(t)e−stdt and use it in the last equation (15). To do that, we will follow the same
approach as in the discrete-time version. Multiply both sides with e−st and integrate. The left hand side will result in
the Laplace transform of δ Id(t), while the right hand one will be

A =
∫

∞

0

∫ T

0
β (τ)Γ(τ)δ Id(t− τ)e−stdτdt =

∫ T

0
β (τ)Γ(τ)e−sτ

∫
∞

0
δ Id(t− τ)e−s(t−τ)dt

=
∫ T

0
β (τ)Γ(τ)e−sτ

∫
∞

−τ

δ Id(ν)e−sν dν (16)

The last integral can be expressed with∫
∞

−τ

Id(ν)e−sν dν =
∫ 0

−τ

Id(ν)e−sν dν +I (s) = I0(τ,s)+I (s). (17)

Now, one has

A =
∫ T

0
β (τ)Γ(τ)e−sτ [I0(τ,s)+I (s)]dτ. (18)

Similarly to the discrete-time case we can introduce the Laplace transform of the epidemic function E(τ) = β (τ)Γ(τ)
and its initial conditions contribution

E (s) =
∫ T

0
β (τ)Γ(τ)e−sτ dτ, (19)

E0(s) =
∫ T

0
β (τ)Γ(τ)I0(τ,s)e−sτ dτ.

Finally, one obtains
I (s) = I (s)E (s)+E0(s), (20)

from where the Laplace transform of the perturbation of the infection rate is

I (s) =
E0(s)

1−E (s)
. (21)

From the results of control theory, a continuous-time linear time-invariant system is stable if the poles of its transfer
function, or Laplace transform of its impulse response have negative real part [14]. Thus, the perturbations δ Id(t) will
decay if the poles of its Laplace transform I (s) (21), or eigenvalues of the system (14) lie within negative half-plane
Re{s}< 0. Then, the epidemic threshold can be obtained with s = 0 which leads to∫ T

0
β (τ)Γ(τ)dτ = 1, (22)
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that represents the relationship, which corresponds to the discrete-time case (12).

5 Markovian SIR model
In order to obtain the classical Markovian SIR model, from the non-Markovian case (1), one should consider taking
T → ∞, β (τ) = β , γ(0) = 0, γ(τ) = γ(1− γ)τ−1 where β and γ are constants. This further yields Γ(0) = 0, Γ(τ) =
1− (1− γ)τ and Γ(τ) = (1− γ)τ = γ(τ +1)/γ . First, one could observe that by using constant infectivity β (τ) = β in
the first relationship of the model (1) and using (2) one will obtain the classical form for evolution of the susceptible
population

S(t +1) = S(t) [1−β I(t)] . (23)

Next, by implementing the condition γ(0) = 0, and the relationship Γ(τ) = γ(τ +1)/γ one can drop the first term in
the sum in the recovered population in (1), and further obtain

T−2

∑
τ=0

γ(τ +1)Id(t− τ) = γ

T−1

∑
τ=0

Γ(τ)Id(t− τ)− γΓ(T −1)Id(t−T +1) = γI(t)− γ(1− γ)T−1Id(t−T +1), (24)

from where, for T → ∞, the recovered population evolves as

R(t +1) = R(t)+ γI(t). (25)

Finally, from the conservation relationship I(t)+S(t)+R(t) = 1, one can find that the infected fraction is given as

I(t +1) = βS(t)I(t)+(1− γ)I(t). (26)

The relationships (23), (25) and (26) represent the classical SIR model in discrete time.
As an example, in the figure 1 we make a comparison between numerical solutions of the discrete classical SIR

model and the classical SIR - equivalent model obtained from the non-Markovian form.
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Figure 1: Comparison between the discrete classical SIR model and the classical SIR - equivalent model obtained from the
non-Markovian form, for β = 0.2, γ = 0.03. It is used rather large finite duration of the healing T = 150, as a proxy for T → ∞.

Similarly to the discrete-time version, to verify that the proposed continuous model is generalization of the classi-
cal, Markovian SIR model, one should consider two characteristics of the latter: 1. The infection rate is independent
on the moment when the disease was contracted β (τ) = β ; and 2. The duration of infectivity is infinite and expo-
nentially distributed which implies that the healing function is γ(τ) = λe−λτ . We note that the respective cumulative
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distribution is Γ(τ) = 1− e−λτ , and accordingly Γ(τ) = e−λτ . By using the functional form of the healing function,
the total infectious population will be

I(t) =
∫

∞

0
Γ(τ)Id(t− τ)dτ =

∫
∞

0
e−λτ Id(t− τ)dτ. (27)

Similarly, by using β (τ) = β , for the dynamics of the susceptible fraction one has

Ṡ =−S(t)β
∫

∞

0
e−λτ Id(t− τ)dτ =−βSI, (28)

that represents the corresponding relationship in the classical SIR model. Furthermore, by applying the functional
form for the healing function, the dynamics of the recovered population will be as follows

Ṙ =
∫

∞

0
λe−λτ Id(t− τ)dτ = λ I, (29)

that is the respective relationship in the classical SIR model. Finally, by using the conservation principle S(t)+ I(t)+
R(t) = 1, the total infectious fraction will evolve as

İ =−Ṡ− Ṙ = βSI−λ I, (30)

that is the remaining familiar relationship from the classical case. As a final note, we just mention that using respective
forms for the infectivity and recovery functions for the Markovian case in the epidemic threshold relationships (12)
and (22), one will obtain the familiar threshold βth = γ .

6 Numerical experiments and discussion
Our numerical experiments with the proposed model were based on solution of the integro-differential equations for the
continuous-time case. We have used the Euler method with step ∆t = 0.01. Although in the model can be used arbitrary
functions of infection and recovery, we have chosen to use those that can been found in the literature as appropriate
for the COVID-19 pandemic. As suggested in [16, 17] the infectivity function β (τ) is conveniently represented with
Weibull probability density function, with parameters α = 2.04 and λ = 0.103, which is further truncated to 35
days and normalized. The daily recovering probabilities were modeled with log-normal probability density function

L(τ; µ;σ) = 1/(τσ
√

2π)exp(−(lnτ−µ)2 /(2σ2)), with parameters µ = ln(µ2
X/(
√

µ2
X +σ2

X ), σ2 = ln
(
1+σ2

X/µ2
X
)

chosen to match a mean value of µX = 21 and standard deviation σX = 6. The distribution is then normalized to 61
days, and time-shifted for 4 days in order to exclude immediate recovery. This results in the healing function γ(τ)
with mean recovery time of 25±6 days, in the following fashion

γ(τ) =

{ L(τ−4;µ;σ)∫ 61
0 L(τ;µ;σ)dτ

, 4≤ τ ≤ 65,

0, otherwise.
(31)

This construct was based on the results from [5, 21], assuming that: 1. Onset of symptoms (on average) occurs
after four days (the time shift); 2. It takes another 7-10 days from onset of symptoms to diagnosis confirmation and
hospitalization; 3. Another 10-11 days, on average, are needed from hospitalization to recovery. The period of T = 65
days is considered in order to include even most extreme cases in which hospitalization exceeded 40 days.

Furthermore, we have chosen to scale the infectivity function with a parameter β given in terms of the epidemic
threshold βth. The threshold value was obtained from the condition (22)

βth

∫ T

0
β (τ)Γ(τ)dτ = 1. (32)

To verify the value of the epidemic threshold we have varied the infectivity parameter in vicinity of the critical value
obtained from (32) and run the continuous-time model for total time equal to 5000. The final values of the susceptible
and recovered fraction are plotted as function of the infectivity parameter in the figure 2. As one can see, once β is
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larger than its critical value, the epidemic emerges.

Figure 2: Fractions of susceptible (red stars) and recovered (blue dots) individuals at the end of the epidemic as a function of the
scaling of the infectivity function β given in terms of its threshold value βth.

In order to verify how well the approach can be used to model the COVID-19 pandemic we have chosen to use
value of the infectivity parameter β that nearly matches the growth patterns of the epidemic in the countries before
countermeasures were applied. As was obtained in a detailed study [15], the epidemic doubling time in many countries
is approximately three days. For that reason, we have opted to use the value β = 4.85βth that produces such growth.
We have numerically verified that in the initial stage of the epidemic, the newly confirmed daily cases and the total
number of infected individuals grow with the same rate, and have the same doubling time. Also, by running the model
with β = 4.85βth for very long time, we have obtained that at the end less than 1% of the population will remain
susceptible! This result means that, if the doubling time is three days in case of free spreading of the virus, then
prevention of the epidemic would need nearly everyone should be either vaccinated or had healed from the virus. This
is particular challenge of the model that should be addressed carefully.

We have finally attempted to check how well the model can explain the observations. To do so, we have used the
COVID-19 data from Our World in Data, for Italy. Our focus was put on the first wave of the pandemic, since in its
beginning no preventive measures were used. We have chosen to study the epidemic in Italy, where the wave was the
strongest. The window of data under study starts from February 21, 2020, that is the date from which every day were
reported new cases. The countrywide lockdown started on March 10, 2020, that corresponds to day 19 in this study.
We have used value of infectivity β ≈ 3.7βth that provided good fit to the observed data for the period from February
21 until March 9. This value was used until the start of the lockdown, when it was set to certain value smaller than
the threshold. The initial condition was set to Id(0) = 10−7, that for Italy would mean about 6 persons infected at the
starting day of simulation. We have chosen to apply detection of the infected individuals on based on a function that
has identical form as the infectivity one, but which is delayed for certain number of days. This corresponds to situation
that only those with symptoms are tested, and their appearance is delayed few days after the onset of infectivity. Also,
there is certain delay that corresponds to the whole process from onset of symptoms, to visit to hospital to obtaining
positive result. We note that the testing function was normalized to 0.8 that corresponds to assuming existence of 20%
asymptomatic cases [2]. To reach a good fit to the observations we had to take the start of the simulation, that is the
day when the initial seed of infection was set, to be approximately 60 days before the day 1, when comparison with the
real data starts. Its exact value was obtained by fitting the logarithms of the daily detected cases from the simulation
to the respective ones from the data. More precisely, we have looked for a shift s, that will result in minimal squared
error as follows

ε = argmin
s

{
1
19

19

∑
k=1

[
ln(Idata

d (k))− ln(Id(k+ s))
]}

. (33)

We report in the top panel of figure 3 two simulated scenarios compared to the observations. In the first case we took
testing function that is delayed after the infectivity one for two days, that actually becomes nonzero at the possible
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onset of the symptoms [9], while the other case corresponds to delay of five days. The latter scenario provides much
better fit to the observations, particularly in the period after the lockdown has started, and even further in the period
after the peak, as one can notice in the figure 3. We have tried with all integer values of the delay from two to ten (not
shown) and five days correspond to the best fit. We remind that the lockdown corresponds to day 19 in the plot, while
the peaks of the daily reported cases are delayed: at day 27 and day 30, for scenario one, and two, respectively. The
peak at the latter case, appears at March 21, the day when largest number of new cases were registered. This fit to the
peak and beyond of the model simulation with the observation, makes a good basis for the relevance of the proposed
framework. In the bottom panel in figure 3 we show how modification of the value of infectivity parameter β during
the lockdown phase influences the daily cases.

Figure 3: Daily confirmed cases in the first epidemic wave in Italy in spring 2020 (in blue squares), compared to numerical
simulations of the model. Top panel: Confirmation function is delayed for two days after onset of infectivity (green circles) and
five days (red stars) and β = 0.75βth. Bottom panel: Confirmation function is delayed for five days, while the infectivity
parameter is: β = 0.5βth (green circles), β = 0.75βth (red stars), and β = βth (magenta crosses)

Although providing natural framework for incorporation of observed distributions of the infectiousness of the
infected individuals and the typical development of the disease, the proposed model has drawbacks as well. First,
before using it, one needs to specify the functions modeling the infectiousness, healing and discovering the infected
individuals. Their determination is a serious issue by their own and needs careful study. As more complex one,
the tuning of the model would need in general more data than the classical Markovian counterparts. Also, its full
specification needs providing initial conditions that represent a high-dimensional vector, or an interval of values. How
all these factors shape the outcome of the model, and how much is it robust to perturbations of any kind is unknown. We
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believe that their understanding could provide the epidemiologists with valuable information for better understanding
of the possible outcomes of epidemics with pronounced non-Markovian nature.

7 Conclusions
The proposed general non-Markovian epidemic spreading model captures the typical patterns of the disease in person
infected with SARS-CoV-2: delayed onset of symptoms and infectivity and impossibility of immediate cure of those
that will become sick. We have studied both discrete- and continuous-time versions and derived analytically the
relationships for determination of the epidemic threshold. The model reduces to the classical SIR model with the
corresponding choice of the functions of infection and healing. The theoretical analysis was supported by numerical
confirmation of the epidemic threshold values. The good fit of the model to the real data shows its promising potential
for application for modeling the spread of other infectious diseases. By introducing other appropriate functions one
could possibly generalize this model to versions that include other compartments that correspond to hospitalized,
quarantined, or deceased persons.

Although the epidemic threshold as key quantity was determined, we did not calculated the basic reproduction
number R0, that represents another important quantity. Furthermore, the relationship between the scaling of the infec-
tivity function β/βth from one side and R0 and the doubling time, from another should be explored as well. With this
regard, we think that it is even more important to determine the herd immunity level needed to prevent the epidemic.
Finally, analysis of epidemic spreading by nontrivial contact patterns, modeled with complex networks, and by incor-
porating the proposed approach could provide further insight in the evolution of the epidemics. These issues could
provide better understanding of the non-Markovian setting in modeling the epidemic spreading.
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