
Named Entity Recognition For Macedonian
Language

Ivan Krstev∗, Fisnik Doko†, Sasho Gramatikov‡, Miroslav Mirchev§ and Igor Mishkovski¶
Faculty of Computer Science and Engineering, Skopje, Macedonia

Email: ∗Ivan.Krstev.1@students.finki.ukim.mk, †fisnikdoko@gmail.com, ‡miroslav.mirchev@finki.ukim.mk,
§sasho.gramatikov@finki.ukim.mk, ¶igor.mishkovski@finki.ukim.mk

Index Terms—NER, Entity Recognition, FLAIR, NLP,
Machine Learning

Abstract—Named Entity Recognition (NER), an out-
standing technique for information extraction from un-
structured texts, is lately becoming the central problem in
the field of Natural Language Processing (NLP). In the last
few years, multiple Python libraries, like SpaCy, NLTK
and FLAIR, accomplished state-of-the-art performances
for this problem. As NER is developing into a powerful
technique, its real-live applications are becoming more and
more numerous: from customer-message categorization to
ease of document analysis in greater corporations. In this
research, we use a ML-based system with the help of the
FLAIR library in Python, which has already provided
optimal results for NER in few world-class languages
(English, German, Russian, French etc.), for financial
entity recognition in financial texts written in Macedonian
language. For the NER task on 13 distinct labels using
our dataset in Macedonian language on the proposed ML
model we have obtained F1-score of around 0.75.

I. Introduction

Today we have access to a huge number of textual
documents, mostly available in an unstructured form
(internet portals, social networks, web apps). These
documents can be used for automating business pro-
cesses which eases the overall work of one company
or institution. However, working with textual data
in its original form is a challenging task since it is
unstructured, specific to its author, and, in some cases,
ambiguous because of the existence of words with
different meanings in different contextual uses, also
known as polysemy.

When talking about NLP and extracting informa-
tion from text, most of the time, we mean NER or
PoS (Part-of-Speech) tagging of texts. Both methods
treat the text as a sequence of words assigning
linguistic tag (or label) to each word. To accom-
plish this task, the current state-of-the-art models
use Bi − LSTM (Bi-directional Long Short Term
Memory), although other methods like the language
Transformers with Attention Layers are widely
used too [1].

NER involves processing a text and identifying cer-
tain occurrences of words or expressions as belonging

to particular categories of Named Entities (NE) -
(A Mikheev, M Moens, C Grover - 1999) [2]. The
main goal is to assign a predefined class (or label) to
the words, depending on the concept they describe
and they belong to. There are several approaches
to build such a model, like, lexical approach, rule-
based systems, ML-based systems (deep learning) and
hybrid systems.

In our work, we will stick to the Deep Learn-
ing based models with the FLAIR library from
ZalandoResearch. This paper covers gathering and
structuring data from Macedonian on-line portals,
building a corpus from it and using it for the
NER labeling problem. In total, 13 labels are
used, "PERSON", "PUBLICATION", "COMPANY",
"NUMBER", "PRODUCT", "EVENT", "PERIOD",
"LOCATION", "AMOUNT", "SECTOR", "MEDIA
TYPE", "POLITICAL ENTITY", and "PERCENT".

The rest of the paper is organized as follows. In
section II we explain the constituent part of the
language model architectures offered by FLAIR. The
word embeddings used for the Macedonian NER
Model are described in section III, whereas the data
description and the used approach for the training
of the model is shown Section IV. In Section V we
evaluate the obtained model from Section IV and we
present and explain the results. Section VI concludes
this work.

II. Language Model Architectures (FLAIR)

Using Machine learning to understand natural lan-
guages is becoming excessively used tool in business
process automation. Training the neural networks
with the minimum amount of data in shortest period
of time is a crucial task for these tools. A tool
that achieves this goal is Zalando Research’s FLAIR
[3] which currently offers state-of-art solutions for
multiple classical NLP tasks, such as, NER and PoS
(Part-of-speech) tagging and text classification with
pre-built language models for more than 20 languages.
FLAIR is PyTorch-based framework which is

pretty intuitive for use in Python for training your
models using the embeddings they offer. It uses

an approach for modeling natural languages with
deep, recurrent neural networks which helps it learn
powerful and contextual information for a language
by a given corpus, which is often huge. This type of
representation contains a lot of semantic and syntax
information, crucial for the NLP problems. FLAIR,
as a sequence labeling architecture, which operates
upon a Neural Language Model.

Along-side corpus, we also have sentence as a
basic data structure, which is an input, represented
as a sequence of characters in a pre-trained language
model. From this model, for each word, we obtain an
embedding (contextualized or static) which is later
used as an input for a Bi − LSTM − CRF (Bi-
directional Long-Short-Term Memory - Conditional
Random Field) Model.

A. LSTM
As mentioned before, Language Models are usually

very sensitive to its "surroundings", like the author,
the state of the data and most importantly, the
domain of the data. In the past, statistical methods
such as the Hidden Markov Models and Conditional
Random Fields were widely used for the classical NLP
tasks, but they required a lot of "manual" feature
extraction and data pre-processing and yet, they were
so task-specific, that it was very hard to adapt one
model to a new domain.

In the recent years, the RNNs took the "hot-spot"
in the NLP world. They are recognized as very power-
ful networks, being able to capture the dependencies in
the data over a longer period of time. This turned out
to be problematic due to the fact that these networks
are using the backpropagation algorithm which is very
prone to the vanishing gradient problem [4]. Some of
the proposed solutions include changing the activation
function from sigmoid to ReLU , like the case with
Convolutional Neural Networks (CNNs) which are
also used in NLP tasks, especially for capturing the
morphology of one word. In this paper, we focus of
the LSTM variant of the RNNs.

The LSTM’s architecture consist of a cell with three
multiplicative gates (regulators), as shown in Figure
1. The cell is responsible to keep the hidden state for
some period of time so it can track the dependencies
of the chronologically ordered data. The 3 regulators
- the input, output and forget gate, are responsible
for the flow of information through the cell, which
information to forget and which to pass forward.

Mathematically, the state of the LSTM Unit at a
fixed time t is written by the following equations [4]:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

Figure 1. The architecture of a LSTM Unit. The 3 sigmoid
functions denote the gates (Forget, Input and Output), xt is
the input (word embedding in our case), ht is the hidden state
of the cell and ct is the cell state vector. (The figure is recreated
based on the article [5])

ot = σg(Woxt + Uoht−1 + bo)

c̃t = tahn(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tahn(ct)

The capital letters denote matrices, whilst the lower
case letters are vectors. xt ∈ Rd is the input vector
for the LSTM unit, ft, it, ot ∈ Rh are the activation
vectors for the forget, input(update) and output gates
respectively, c̃t ∈ Rh is the cell input activation vector
and ct ∈ Rh is the cell state vector, W ∈ Rhxd and
U ∈ Rhxh are the weight matrices and b ∈ Rh is
the bias. The weight matrices and the bias are set at
first to their initial values and they are later learned
(optimised) in the training phase. d and h are the
dimensions of the input vector and the number of
hidden states respectively.

1) Bi-LSTM: One word in a sequence labeling task
is not only dependent on the words that occurred in
the past, but also on the upcoming words. The previ-
ous LSTM architecture’s hidden state was only taking
into consideration the past occurrences which is not
enough to shape the whole context. The idea behind
the Bi-LSTM is, in addition to the forward model
training, to train a separate backward model with the
exact same architecture and later concatenate both
hidden states in one state that encodes both the past
and the future in one sequence.

B. GRU
The Gated Recurrent Unit or GRU is a lite variant

of the LSTM network as it works on the same
principal, but it lacks the Output Regulator (as
seen on Figure 2). It has fewer parameters which
makes it more suitable for smaller, unbalanced and
rare data sets. The update gate of the GRU has a
similar function to the Input and Forget gates of the
LSTM, deciding which past information will be kept
for the future. The Reset gate, on the other hand,

is responsible for deciding on the amount of past
information that will be forgotten. One fully gated
unit has the following parameters [6]:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tahn(Whxt + Uh(rt � ht−1) + bh)

ht = (z − zt)� ht−1 + zt � ĥt,

zt is the update gate vector, ht is the output vector,
ĥt is the candidate activation vector and rt is the reset
gate vector.

Figure 2. The architecture of a GRU Unit. The sigmoid
functions denote the gates (Reset and Update), xt is the input
(word embedding in our case) and ht is the hidden state of the
cell. (The figure is recreated based on the article [5])

C. CRF - Conditional Random Field
Until now, we have discussed about bi-directionality

and how to encode the surrounding of a word in order
to extract its full context. However, we might make
further improvements if we take into consideration
not only the words around the observed one, but also
their own labels. When speaking about NER, it is very
intuitive that most of the time we see certain group
of labels together. On the other hand, we are pretty
sure that a tag t1 can never be followed by a tag t2
(e.g. I-PER cannot follow B-LOC [7]), so, if we train
our model with these rules, better results could be
achieved. The most appropriate tool that can achieve
this goal is the CRF-decoder.

The CRF is a discriminating statistical modeling
technique based on uni-directional graphs used to cal-
culate the conditional probability of values (tags) on
designated output nodes that takes into consideration
the distribution of neighbouring nodes’ values when
assigning a tag [8]. Suppose we have a random variable
X consisting of words that need to be labeled and a
random variable Y with the corresponding label for
each xi ∈ X and this Y is a subset of the set Y
that is the space of all possible labels in our world
and P (Y |X) is the conditional probability. Then,
according to [9], we will define the CRF as a graph

G = (V,E), s.t. Y = (Yv)v∈V , or with other words, our
subset of labels Y is denoted by the vertices of G and
we say that (X,Y) is a conditional random field when,
given X, the random variable Yv satisfies the Markov
property (the conditional probability distribution of
current state, depends only on the previous state) with
respect to the graph:

P (Yv|X,Yu, u 6= v) = P (Yv|X,Yu, u ∼ v),

s.t. the ∼ symbol denotes adjacency between two
vertices, or with other words the state Yi, given its
neighbours, is conditionally independent from all the
other states in the graph G.

Our experiments only confirmed the importance
of the Conditional Random Field, namely, from the
results in Table I, we can observe that using the
RNN alone, we obtained almost 0.1 lower F1-Score
compared to the case where, additionally, the CRF
was used, both for LSTM and GRU.

Table I
Impact of the usage of the Conditional Random Field Layer to

the score of the NER_MK model.

NER - Mcedonian Language
RNN F1-Score(macro) F1-Score(micro)
GRU + CRF 0.77 0.75
LSTM + CRF 0.73 0.70
LSTM 0.68 0.65

III. Word Embeddings

We can consider word embeddings as the basic
concept in NLP. Each word in the corpus must be con-
verted to a tensor with the help of these (mostly) pre-
trained models in order to be understandable for the
machine. In FLAIR, each Embeddings class inherits
from the TokenEmbedding or DocumentEmbedding
interface. Both the interfaces require implementing the
.embed() method for converting a Sentence object or
a list of Sentence objects to a tensor. We can divide
these Word Embeddings into two categories: static
and contextualized.

A. Static Embeddings

Static Embeddings have the same representation
for each word that has the same form, no matter
of its semantic meaning i.e., they do not take
into consideration the distribution of words used,
before and after the target word we are modeling the
embedding for. Static embeddings included in FLAIR
are WordEmbedding, BytePairEmbeddings,
CharacterEmbeddings, FastTextEmbeddings and
OneHotEmbeddings.

B. FLAIR Contextualized String Embedding

Contextual string embeddings are considered a
break − through for the contemporary processing of
natural languages. They combine few very important
aspects in this field : (1) the possibility to be pre-
trained on large unlabeled corpora; (2) they catch
the semantic meaning of a word and enable different
representations on polysemous words depending on
the context; (3) it models the words as a sequence of
character, which cancels the problems when a word is
not in the given dictionary or simply, it is not spelled
right [10].

Most of the time, obtaining the word embedding
in a form of a vector (or tensor) is done using the
LSTM version of the recurrent neural network. More
sophisticated embeddings like BERT use language
model transformers with special Attention layers.

They work on a character-level and their main
goal is to find a sufficiently good prediction of the
distribution P (c0:T) for a sequence of characters
(c0, c1, ..., cT) = x0:T . With the training of the model,
it is obtained P (ct|c0, ..., ct−1) or the prediction for
the distribution of the next character, given the
distribution of the previous ones. The joint distri-
bution of the whole sentence can be represented as
the product of the predicted distributions of all the
characters, conditioned from the distributions from
their predecessors:

P (c0:T) =

T∏
t=0

P (ct|c0, ..., ct−1)

At LSTM’s architecture, the conditional probability,
P (ct|c0, ..., ct−1) is approximately, function of the
output of the network ot.

P (ct|c0, ..., ct−1) ≈
T∏

t=0

P (ct|ot; θ)

where θ is the vector of all the parameters of the
model.

The hidden gem of FLAIR’s embeddings is perhaps
the wholesome utilisation of the hidden layers of the
LSTM network. In addition to the forward model, a
backward model is also trained in a complete identical
way, but complete opposite direction.

P r(ct|ct+1, ct+2, ..., cT) =

T∏
t=0

P r(ct|ct+1, ..., cT)

P r(ct|ct+1:T) ≈
T∏

t=0

P r(ct|ort , θ),

s.t. r stands for reversed order and ort is again a
function of the output of the LSTM network that,

in a way, encodes all the data that the model has
seen to the given character.

For both cases, a fully connected softmax layer
is used which outputs a normalized vector whose
dimensions represent the probability of having the
certain character next in the sequence.

We can see that the forward model captures the
semantic meaning of a sentence up to the point of
the observed character, and the backward language
model captures the exact same thing, but starting
from the end of the sentence up to that character.
The main idea is to concatenate both models to obtain
the semantic information and the context of the whole
word and its surrounding by stacking the outputs of
the forward and backward model:

wecharLM
i =

[
ofti+1−1
orti−1

]
.

C. BERT Embedding
BERT stands for Bidirectional Encoder Representa-

tions from Transformers. Its aim, just like the previous
model, is to build a pre-trained model from unlabeled
data using the deep bi-directional representations
from both sides of a word [11]. Although similar,
conceptually, as discussed in [12], it differs in the
architecture with the FLAIR LMs in a way that
FLAIR’s LM concatenates the representations for the
forward and the backward model, while BERT deeply
incorporates the bi-directional context.

The structure of a BERT model consists of an
encoder that is a stack of recurrent units (like LSTM
or GRU) to process one element of the input sequence
(in the word embedding case - 1 character) and
to forward the obtained information and a decoder
consisting of recurrent units, where each one generates
a prediction of an output yi, one at a time with a time
step i.

1) Encoder: The encoder is a stack of N identical
recurrent unit layers, usually 6, 12 or 24 with separate
weight vector. Furthermore, each of those layers con-
sists of two subunits, the Self − Attention sublayer
[13] and a Feed − Forward Network. The input of
the of the encoder is the initial embedding of the
word (token, segment and position embedding) and is
usually constructed to facilitate the Fine Tuning task
for other NLP problems.

The input firstly passes through the Self-Attention
layer so that the model can look up for other se-
mantically and syntactically connected words in the
sentence. The output of this sublayer is then passed
as an input to the feed-forward network.

2) Self-Attention Sublayer: Self-Attention is a con-
cept of finding the relation between particular words
in a sentence i.e., if we have the sentence "The quick
brown fox jumped over the lazy dog", the aim is to

teach an algorithm that the first "the" and "brown"
refer to "fox" and the second "the" and "lazy" to
"dog".

From the perspective of an algorithm, the Self-
Attention is a process consisting of 6 steps [14]:

• Constructing Query, Key and Value vectors for
each of the encoder’s input – During the training
phase, 3 matrices are optimised θQ, θK and θV ,
and each of the inputs is multiplied with one of
these matrices to obtain the corresponding vector
with fixed length.

• Calculating a score – If we are calculating an
embedding for a word in a sentence, say the
word number 1, then we are calculating the dot
product QueryV ector ·KeyV ector for this word
against the remaining words in the sentence.
The score for the observed word with itself is
always the greatest, because we are doing a dot
product between the same vector and obtaining
its squared norm. The higher the score, the
stronger the connection.

• Divide the score – The 3rd step is to divide the
score with the square root of the dimension of
the Key vectors in order to obtain a more stable
gradient.

• Normalize – The output from the previous step is
now passed through a softmax function in order
to make all the dimensions positive and normalize
the score vector.

• Multiply score with value vector – We multiply
the value vector with the softmax score in order to
get rid of irrelevant connections with tiny softmax
scores.

• Sum – The last step is to sum all the weighted
value vectors and obtain the self-attention output
for the observed word as

Attention(~Q, ~K, ~V) = softmax(
~Q ~KT

√
dk

)~V .

3) Decoder: Just like the encoder, the decoder
consists of the same N number of units divided into
the same subunits. The input for each of the decoder
units are the Self-Attention vectors K and V , used for
determining the appropriate focus of the decoder in
the input sequence. The output of the decoder, which
is a vector of floats, is then passed to the final fully
connected Linear Unit which transforms it to a much
wider vector having one dimension for each word in
the vocabulary. The output of this layer will give us a
vector of probabilities corresponding to the words in
the vocabulary such that the cell for the word with
the highest probability is chosen.

D. Stacked Embeddings
Most of the time, there is a need of combining

more embeddings, which in FLAIR is enabled by the
StackedEmbeddings class. It is initialized with a list
of the desired embeddings, stacked on one another,

wei =

[
wecharLM

i

westatici

]
,

and later on, they function as a regular
Embedding class, i.e., they inherit the
TokenEmbedding interface and define the .embed()
method. Apart from FLAIR Forward-Backward
and BERT embedding, Flair also includes
PooledF lairEmbeddings, ELMoEmbeddings and
TransformerWordEmbeddings which include a few
classical variants of pre-trained transformers, such as
RoBERTa, XLM , etc.

Table II
Impact of the embedding types on the score of the NER_MK

model.

NER - Mcedonian Language
Embeddings F1-Score(macro) F1-Score(micro)
FlairEmbeddings+
BERT

0.77 0.75

FlairEmbeddings+
BytePair+ BERT

0.67 0.64

WordEmbeddings+
BytePair+ BERT

0.63 0.59

Remark 1. Although there is a statement from
ZalandoResearch that the best results for NER
are obtained by combining contextual and static
embeddings, our model worked better when only the
contextual embeddings were taken into consideration.

IV. NER model - Macedonian Language
The experiment for the NER model built for the

Macedonian language consisted of obtaining the data
set, which included scraping it from the WEB, labeling
and conversion to CoNLL format used by FLAIR,
and than, building and testing few different models,
further discussed later on.

A. Data
The data that used in this experiment was scraped

from Macedonian web pages for on-line news, time.mk
and greed.mk. We considered news from Macedonia,
the Balkan and the world belonging mostly to finance,
economy, politics, life, chronicle, culture, technology
and scene. Part of the data was obtained using
fetchRSS in a csv format, while the the other
part was scraped using the BeautifulSoup library in
Python. The labeling of the data was done using the
doccano software. At the end, we obtained 13 relevant
classes of news, each one containing sufficiently big
number of instances for training.

FLAIR uses all of the CoNLL formats for data
representations in textual files. Each token is given
in a new, separate row with its appropriate label and
tag, that can be B − tag, I − tag and O − tag (BIO
stands for Beginning, Inside, Outside [15]). When a
given token does not have any label, it is marked with
the O tag. When a token is part of some entity, it is
marked with either the I tag or the B tag, so that if
that particular token is the beginning of the entity,
it is assigned the B-tag (as shown in Figure 3). The
I-tag is only used when a given token has the same
entity as the previous one without any O tags between
them (multi-token entities). There are also extensions
to this format, such as the BIOES format.

Figure 3. IOB-tagging example.

1) Data Tokenization: Another very important as-
pect, when it comes to processing a text, is the sen-
tence tokenization. The correctness of the distribution
of the labels in the text is directly conditioned on
the type of the tokenizer used to split the sentences
into separate words i.e., tokens. Tokenizers can be as
simple as splitting sentences on white spaces, but there
also exist more advanced and contemporary models
like the SpaCy, NLTK and Segtok tokenizers.

Choosing the tokenizer mainly depends on the
nature of the problem we are working with and
the granulation of the tokens we expect to achieve.
Some NLP problems that are tightly dependant on
the grammatical composition of the words i.e., text
summarization, where the output is a sequence of
words that we expect to be grammatically correct,
may not work well if we perform tokenization by
simply splitting on white spaces. These kind of prob-
lems require pre-trained language models as tokenizers
which are able to split the sentence depending on its
grammatical formulation. Let us consider the string
aren′t. If we use a simple split on white spaces, this
remains as a single token. Otherwise, two separate
tokens are and n′t are obtained.

For our particular task, named entity recognition for
Macedonian language, we compared the two different
approaches when it comes to text tokenization: the
simple split lines function on white spaces and the
Segtok tokenizer, which is the default tokenization
technique used by the FLAIR framework. One in-

teresting conclusion we came to after obtaining the
results is that the later worked the best, but only when
we filtered the punctuation-only tokens that were not
part of any label. Otherwise, the simple split lines
did a better job than Segtok itself. Considering that
punctuation is quite important part of the labeled
tokens for the NER problem, we used the simpler
tokenization approach.

B. Training
The training phase was mostly experimenting with

the embeddings, the type of the RNN and the hyper-
parameters of the model.

Taking into consideration the similarity of the
Macedonian language with the other Slavic languages
(Serbian, Russian, Slovenian, Czech etc.), the idea was
to stack all these WordEmbeddings together with the
BytePairEmbeddings for the Macedonian language in
order to get satisfying results. However, not only that
the results were unenviable, but the training process
took to much time as a result of the huge dimensions
of the input embeddings.

The next step was to get a subset of the previous
languages (the South Slavic group) and combine them
with contextualized string embeddings like FlairEm-
beddings and BERTEmbeddings, which slightly im-
proved the results, but as mentioned before, the best
results were obtained when only the contextualized
multi-language embeddings were taken into consider-
ation, in our case FlairEmbeddings(’multi-forward’),
FlairEmbeddings(’multi-backward’) and BERT (as
shown in Table II).

When it comes to the type of the RNN that should
be used in a NER Language Model, there is one
question that should be asked – How big is the
data set? The differences between LSTM and GRU
are already discussed, so we can conclude that when
having a huge and complex data set, the LSTM is
expected to get better results. When the data set is
smaller and rare, then the GRU variant is expected to
perform better in most of the cases. For best results,
the safest variant is to check both LSTM and GRU!

The most reliable hyper-parameter in any ML
model is probably the learning rate, the step used
in the gradient descent algorithms for optimising the
loss function. The most common and recommended
value for this parameter in the NER tasks is 0.1,
which proved true in our experiments. Increasing the
learning rate would only increase the number of epochs
it takes the loss-function to converge, and decreasing
it would make the loss function to converge too early
and leave the model with way less information about
the data. Other useful hyper-parameter that can be
used is the reproject_embeddings parameter, which
adds a trainable layer on top of the fully connected

layer for re-projecting the word embeddings. Often
there is a problem with an unbalanced data set and
selective learning, or simply, catching a certain class
of labels is more important then an other. For any
of these cases, the weight of each tag can be set
independently with the loss_weight parameter. There
are several other hyper-parameters not mentioned
because they were left as the defaults or simply the
FLAIR recommendation was taken into account.

The discussed model is trained with 110 epochs over
a network with hidden size of 256 layers, starting with
a learning rate of 0.1. From Figure 4 we can conclude
that the model learned the most information with the
learning rates of 0.1, 0.05 and 0.025. As shown in
Figure 5, the F1 of the training set starts to converge
at epoch 80.

Figure 4. loss vs. learning rate

Figure 5. f1 vs. epochs

V. Results and Evaluation
The main task of this model was to label words

in unseen sentences with one of the 13 previously
mentioned classes. From the results, as shown in Table
III, the classes with more static surroundings like the
"PERCENT" and "AMOUNT" were not a problem
for our model at all. The reason for the good results
is that the labeled segments from the "PERCENT"
class contain the % sign or the word "percent" with
very high probability. The same applies to the labeled
segments from the "AMOUNT" class which most
certainly contain currency as a word or a symbol. The

more challenging class, that still performs well, is the
"NUMBER" class. The main issue with the labeled
segments from this class is that they are mistaken with
the "PERIOD" class containing numeric time ranges.
Labeling entities with the "EVENT" class gives the
worst results since it events in texts are very stochastic
in nature and they usually do not have fixed distri-
bution of surrounding words like the "PERCENT"
and "AMOUNT" class. As we mentioned before, a
possible way to improve the results for certain classes
with unsatisfactory results is to increase their weight,
but in this case resetting the weights only affected the
results of the model negatively i.e. the amount of the
improvement we achieved for the "EVENT" class was
not worth the decrease of the overall model’s score.

Table III
Distribution of TP, FP and FN for the testing ser in the

classes.

NER - Mcedonian Language
Label TP FP FN
AMOUNT 9 0 4
COMPANY 78 22 33
EVENT 71 58 78
LOCATION 110 21 26
MEDIA TYPE 16 3 9
NUMBER 117 40 23
PERCENT 3 0 0
PERIOD 94 18 20
PERSON 116 20 14
POLITICAL EN-
TITY

32 8 7

PRODUCT 59 32 26
PUBLICATION 19 7 7
SECTOR 10 4 5

For a comparison, the same corpus with data in
Macedonian language was fed to a BERT Transformer
with Attention Layer model, sharing the same hyper-
parameters. As shown in Table IV, The FLAIR model
gave better results for the observed parameter space,
however, this may be due to unexplored parameter
space in our implementation, as we focused more on
achieving better results with FLAIR’s bi-directional
language model.

Table IV
Comparison of FLAIR and BERT models.

NER - Mcedonian Language
F1-Score(macro) F1-Score(micro)

FLAIR 0.77 0.75
BERT 0.55 0.52

As Macedonian language is part of the South group
of the Slavic spoken languages, we found it challenging
to see what information our model can extract from
another language of the same group. Due to the
similarity, we chose to make this experiment with a

Serbian corpus with data obtained from on-line Ser-
bian portals. Most of the common classes like "PER-
SON", "LOCATION" and "POLITICAL_ENTITY"
were detected with high accuracy, having f1 scores of
0.83, 0.8 and 0.66. However, the "EVENT" class did
not perform well in this case too. The micro f1-score
for the whole corpus is 0.61 and the macro f1-score is
0.48. The bit gap between these two values is due to
the small size of the testing data set and the absence
of sufficient number of data points to test on.

We also tried to check how a multi-lingual model
would behave when fed with data from two completely
different languages belonging to different language
families, like Macedonian and Albanian. As expected,
FLAIR’s multi-lingual model did a great job in com-
bining these two, such that there were no obstructions
from one language to another in the training phase.
This turned out to be a great technique when dealing
with corpora with inefficient amount of data, as the
whole process acts in a kind of a data augmentation
way. The Macedonian corpus was supported by the
Albanian and vice versa, which eventually helped the
loss function to converge faster, since we had more
training data and increased the test scores for both
the languages.

VI. Conclusion

With the rapid displacement of the real world
towards the machines and the Internet, there is a
rapid increasing of the need for changing the way we
do the everyday tasks from manually to automati-
cally. The Natural Language Processing algorithms
are designed to go through and process huge amount
of texts and extract information from it, that can
be not foreseen with the naked eye of a human.
The Named Entity Recognition is only one branch
from the wide palette, that is helping us to focus
on the right grain in the send of words. When
building such a model, one should always be aware
in which domain and by who that model is going
to be used. FLAIR is one modern solution to this
problem, that minimises the manual work with the
data and optimises the results, but most importantly
of all, it supports and eases the development of models
for smaller languages (as Macedonian is) with little to
no resources available. Furthermore, we used corpus
from a language from the same language group as
Macedonian and obtained satisfactory results for the
same classes as for Macedonian, proving how powerful
the concept of multi-lingual language models is. We
believe that this Named Entity Recognition model
is an important point for the Macedonian language
processing and information extraction and that, it will
encourage further researches in the field of NLP, as

well as broaden the amount of available labeled data
in Macedonian.

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” 2017. [Online]. Available:
https://arxiv.org/pdf/1706.03762.pdf

[2] A. Mikheev, M. Moens, and C. Grover, “Named entity
recognition without gazetteers,” in Ninth Conference of the
European Chapter of the Association for Computational
Linguistics, 1999.

[3] A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter,
and R. Vollgraf, “Flair: An easy-to-use framework for state-
of-the-art nlp,” in NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), 2019, pp.
54–59.

[4] X. Ma and E. Hovy, “End-to-end sequence label-
ing via bi-directional lstm-cnns-crf,” arXiv preprint
arXiv:1603.01354, 2016.

[5] M. Phi, “Illustrated guide to lstm’s and gru’s: A
step by step explanation,” 2018. [Online]. Available:
https://towardsdatascience.com/illustrated-guide-to-lstm
s-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

[6] K. Irie, Z. Tüske, T. Alkhouli, R. Schlüter, and H. Ney,
“Lstm, gru, highway and a bit of attention: An empirical
overview for language modeling in speech recognition.” in
Interspeech, 2016, pp. 3519–3523.

[7] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami,
and C. Dyer, “Neural architectures for named entity recog-
nition,” arXiv preprint arXiv:1603.01360, 2016.

[8] P. M. Shishtla, K. Gali, P. Pingali, and V. Varma,
“Experiments in telugu ner: A conditional random field
approach,” in Proceedings of the IJCNLP-08 Workshop on
Named Entity Recognition for South and South East Asian
Languages, 2008.

[9] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” 2001.

[10] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string
embeddings for sequence labeling,” in Proceedings of the
27th International Conference on Computational Linguis-
tics, 2018, pp. 1638–1649.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[12] S. Schweter and A. Akbik, “Flert: Document-level features
for named entity recognition,” 2020.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[14] J. Alammar, “The illustrated transformer,” 2018. [Online].
Available: http://jalammar.github.io/illustrated-transfo
rmer/

[15] L. A. Ramshaw and M. P. Marcus, “Text chunking us-
ing transformation-based learning,” in Natural language
processing using very large corpora. Springer, 1999, pp.
157–176.

https://arxiv.org/pdf/1706.03762.pdf
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

	Introduction
	Language Model Architectures (FLAIR)
	LSTM
	Bi-LSTM

	GRU
	CRF - Conditional Random Field

	Word Embeddings
	Static Embeddings
	FLAIR Contextualized String Embedding
	BERT Embedding
	Encoder
	Self-Attention Sublayer
	Decoder

	Stacked Embeddings

	NER model - Macedonian Language
	Data
	Data Tokenization

	Training

	Results and Evaluation
	Conclusion
	References

