
Chem. Educator 2009, 14, 1–3 1 

Excel Simulations of Games: An Introduction to Kinetics and Equilibrium 
Concepts 

Don Lewis,† Vladimir M. Petruševski,‡* Carlos Alexander Trujillo§ 

Bandera Texas, USA, lewis@indian-creek.net,† Institute of Chemistry, Ss. Cyril & Methodius University, 
Republic of Macedona, vladop@iunona.pmf.ukim.edu.mk‡, Departamento de Quimica, Universidad National de 
Columbia, Cuidad Universiaria, Cra. 30 45-03, Bogotá, Colombia§ 

Received April 15, 2008. Accepted November 18, 2008. 

Abstract: Basic concepts relating to rate, rate constant, and equilibrium can be taught using games. One 
drawback in using such games with student-acquired data is the time consumed in performing the game activity. 
Excel programs using Excel’s random number capabilities can produce game results in the few seconds it takes to 
scroll through the data for a view of the averaged results, graphs and empirical equations describing some aspect 
of the game. Four games are described. Excel programs used to simulate the four games are provided in the 
supporting material. 

Introduction 

Chemical kinetics and equilibrium concepts play important 
roles in physical chemistry. It does not seem that many 
chemical demonstrations are available as lecture 
demonstrations (apart from those that refer to catalysis). There 
is a sound reason for the above: a chemical demonstration 
should, in principle, be as short as possible (~ 5 min). 

Student-conducted activities, games, have been used to help 
students form concepts relating to rate, rate constant, order of a 
reaction and integrated rate plots [1–3]. 

Student-conducted activities have also been used to 
introduce equilibrium concepts [4, 5]. 

The instructional potential of such games may not have been 
utilized because of a reluctance to use laboratory time that has 
been reserved for other purposes. Usually, the game is 
analyzed in terms of its averaged outcome after each play.  

With a small number of game pieces, a rate or equilibrium 
game involving stochastic processes requires a 
correspondingly large number of repetitions of the game. A 
computer simulation allows for the use of as many as 1000 or 
as few as 3 game pieces. The simulations have user option for 
the number of game pieces and other parameters. The game 
simulations are Excel files available in the supporting material. 
Four games are considered in the present contribution. With 
the exception of the quasi-second-order game, the games 
described have been used as student activities in which the data 
is student acquired in laboratory or classroom situation. A 
description of each game follows [6]. 

A Zero Order Rate Game [7] 

• Students measure and record the mass of an empty, plastic
disposable coffee cup. A small handful of beans is added
to the cup and the mass of the cup and contents is
measured.

• One bean at a time is removed from the cup and the mass
of the cup and its contents is recorded. A total of ten
beans are removed from the cup.

From their measurements, students are asked to estimate the 
number of beans placed in the cup at the start of the exercise. 
Figure 1 and the empirical equation that describes the graph 
are used. 

A First Order Rate Game [8] 

• N sugar cubes are marked with a felt-tipped marker on n <
6 faces.

• The marked cubes are tossed as dice are tossed and cubes
landing so as to display a marked face are replaced with
an unmarked cube [9]. The number of marked cubes
remaining after each of 10 throws is recorded.

Quasi Second Order Game [10] 

Twelve black beans are placed in a cup. Two beans are 
drawn from the cup. The beans chosen are, of course, black 
beans. The two black beans are replaced by two white beans 
and returned to the cup. Initially the cup contains ten black 
beans and two white beans. 

• Successive attempts are made to reduce the number of
black beans in the cup by drawing two beans.

• If both beans drawn are black beans, the two black beans
are replaced by two white beans and returned to the cup.

• If the beans drawn are not both black beans, the beans
drawn from the cup are returned to the cup.

• The cup is shaken to mix the beans after each draw and
possible replacement of black beans by white beans.

• The number of black beans remaining in the cup is
recorded after each draw.

The averaged outcome for a large number of repetitions of 
the game can be used to produce the integrated rate plot shown 
in Figure 3. 

An Equilibrium Game 

Sugar cubes are used as game pieces. The reactant (R) game 
pieces are marked on nR faces while the product game  
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Figure 1. Mass of cup and contents as a function of draw number. 
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Figure 2. Progress of first-order game taken from Excel simulation 
“Order1” (Rinf is the limiting value for Rt as t → infinity. For a rate 
game, Rinf = 0 and the absolute value sign is unnecessary). 
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Figure 3. Integrated rate plot taken from Excel simulation “Order2” 
(B is the number of black beans in the cup). 
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Figure 4. Simulation of the equilibrium game for N = 21, nR = 2, nP = 
1, Requi = 7. 
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Figure 5. Theoretical probabilities for N = 3, nR = 2, nP = 1, Requ = 1 
calculated using Excel simulation “Matrix.” 

pieces are each marked on nP faces, nR > nP > 0. The mark(s) 
on product cubes are made with one color and the mark(s) on 
reactant cubes are made with a different color. The initial 
conditions for the game involve R reactant cubes and P product 
cubes for a total of N = R + P cubes [11]. The number of 
cubes, N, does not change during the course of the game. 

R cubes that display a marked face are replaced with P 
cubes, and P cubes displaying a marked face are replaced with 
R cubes After each throw, t, and R → P and R ← P 
conversions have been accomplished, the number of reactant 
cubes remaining in the collection is recorded.   

Figure 4 displays an outcome for a simulation of the game. 
Let Pkt represent the probability that k reactant cubes remain 

after tth toss and Φt represents the column vector with entries 
p0t, p1t… pN,t. Theoretical probabilities can be calculated for 
each toss by repeated use of M Φt = Φt+1 staring with the 
initial condition. (Φ0). Excel performs the matrix 
multiplication. The matix M is somewhat tedious to construct. 
Only the case for N = 3 is given in the supporting material. For 
each Φt , an expectation value, <nt> is calculated. A graph of 
<nt> as a function of t very closely follows the graph produced 
by the simulation program. Two probability distributions are 
shown in Figure 5. 

The experimental probability functions produced by the 
simulation using the same game parameters (N = 3, Rinitial = 3, 
nR = 2, nP =1) is also in agreement with Figure 5. Φt rapidly 
converges to Φequilibrium as t becomes larger. Requilibrium is the 
expectation value associated with  Φequilibrium, that is, 
M Φequilibrium = Φequilibrium. In the case considered, M has an 
eigenvalue λ = 1 and Φequilibrium is the eigenvector associated 
with eigenvalue λ = 1. This aspect of the equilibrium game, 
describing an equilibrium situation as a probability 
distribution, may be useful in helping students form concepts 
relating to wave functions. While not really probability 
functions, wave functions are eigenfunctions and as such are 
independent of time. Throw number plays the role of time for 
Φt but Φequilibrium is time independent. 

Conclusion 

The games offered might be useful to supplement lectures 
and laboratories. Given the corresponding Excel files, students 
can “experiment” for hours, varying the initial conditions 
(number of cubes, draws etc.). Basically, the response of 
students has been positive. Some students at the university 
level have said that the task suggested in the “Order0” game is 
a bit too simple. One of us (D. Lewis) taught for a number of 
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years at the high school level. The “too simple complaint” was 
not voiced.  

Supporting Material. The four Excel files referring to each 
of the games discussed are included as supporting material 
(http://dx.doi.org/10.1333/s00897092183a). The files are as 
follows: Order0: This simulation is useful only for the zero-
order rate game. Order1: This simulation may be used either 
for the first-order rate game or for the equilibrium game. 
Order2: This game produces data and graphs related to the 
quasi second-order game. Matrix: This file constructs the 
transition probability matrix for either the first-order rate game 
or for the equilibrium game. In either situation, the total 
number of cubes is three. If one uses the simulation “Order1” 
to compare results from “Matrix,” the total number of cubes 
chosen in “Order1” should also be three. 
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6. To start a game, just double click the corresponding Excel icon and 

inspect the results in the file (for the latter “macros” must be 
enabled). Note that the use of the random number generator may 
provide slightly different results for each run even if the same initial 
conditions are used (this is particularly true for the “Order0” game). 

7. The simulation is based on measurements of mass for 100 beans. The 
simulation uses the average mass of a bean, the standard deviation in 
the mass of a bean and, the average mass of the container used. The 
initial mass of the container and contents is derived from a random 
assignment of the initial number of bean in the cup (20 < N0 < 35). 

Mass changes after each withdrawal reflect random departures of 
magnitude σ/2 from the average mass of a bean.  Particularly at the 
high school level, this activity has instructional value as an example 
of a situation illustrating that “How much?” can mean “How 
many?”—a notion critical to the development of the mole concept. 
By entering the mass of the cup, the initial mass of the container and 
contents and the measured mass after each removal of a bean, the 
simulation can serve as a template for producing a graph and 
empirical equation for student collected data. 

8. For cubic dice, if n = 0 there is no game. If n = 6, all of the reactant 
cubes become products after the very first toss. 

9. Replacement of marked cubes by unmarked cubes is not really 
necessary since unmarked cubes would not effect changes in the 
number of marked cubes. The simulation may produce an integrated 
rate graph and an empirical equation from which a rate constant can 
be assigned. Students may intuitively feel that if say two faces are 
marked on each reactant cube then on the average, 1/3 of the number 
of reactants present at the beginning of each throw would be 
removed. However, using n = 2, N = 20 in the simulation might result 
in a slope of the graph = –0.404, quite different from the student’s 
expectation, –0.333.  This situation arises because the average 
behavior of the system is described by a difference equation, ΔRavg(t) 
= (1/3) Ravg(t). For t an integer the equation has the solution Ravg(t) = 
N(1–1/3)t . The integrated rate plot suggests that Ravg(t) = Ne–0.404t. 
The apparent disagreement is resolved in the simulation by 
evaluating e–0.404 = 0.666 (approximately 2/3). 

10. The game described is not really a second-order game. It is 
impossible to contrive a game with discrete game pieces, no matter 
how many game pieces are involved in which the behavior of the 
game is described by a second-order rate expression. The simulation 
displays integrated rate plots assuming zero, first- and second-order 
kinetics. The second-order description seems to best describe the 
outcome. In the simulation, the total number of beans can be changed 
from the default value 12.  Even changing 12 to 14, results in 
drastically altered integrated rate plots. 

11. In order to have integer equilibrium values for Requil and Pequil, one 
must use N as an integral multiple of nR + nP. For example, if nR = 6, 
and nP = 5 using 33 cubes leads to Requil = 15.  This pathological 
choice for nR and nP produces an interesting graph of the system’s 
approach to equilibrium. 
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