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a b s t r a c t 

The availability of commercial wearable bio-sensors provides an opportunity for developing smart phone ap- 

plications for real-time diagnosis that can be used to improve the health of the user. We propose a multi-level 

information fusion approach for learning a predictive model for blood pressure (BP) using electrocardiogram 

(ECG) sensor data. The approach fuses the information on five different levels: i) data collection, where data 

from multiple ECG sensors is collected; ii) feature extraction, where features are extracted from the collected 

data by different preprocessing methods; iii) information fusion, fusing the evaluation information from different 

classifiers; iv) information fusion using the information from multi-target regression models for each BP class; 

and v) information fusion using the information from multi-target regression models from all configurations as 

a single model. This is used for predicting the blood pressure values (systolic BP (SBP), diastolic BP (DBP), and 

mean arterial pressure (MAP)). Evaluating the methodology by using a separate test set indicates that the multi- 

level information fusion provides promising results, which are acceptable and comparable to the state-of-the-art 

results obtained for blood pressure prediction. 
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. Introduction 

According to the World Health Organization (WHO) statistics, nearly

3% of the global deaths are considered to be preventable [1] . Up to

0% of them are related to cardiovascular disease. High blood pressure

BP) is one of the factors that increases the risk of cardiovascular dis-

ases and strokes [2,3] . Therefore, hypertension detection is crucial for

ppropriate and on-time treatments [4] . 

Recently, the expansion of commercial wearable bio-sensors enables

eal-time monitoring of multiple physiological signals and other vital

igns (heart rate, respiratory rate, and oxygen saturation), with the ex-

eption of blood pressure, aim to bring the possibility for developing

mart phone applications for real-time diagnosis [5] . For monitoring

lood pressure, either standalone devices are developed for non-invasive

onitoring [6–12] , or, blood pressure is estimated by combining mul-

iple physiological signals [13–19] . However, no strong evidence of the

eliability of those approaches exists [20–22] . 

Since electrocardiography (ECG) is most common physiological sig-

al that is emitted by the commercially available wearable bio-sensors,

e consider the task of predicting blood pressure solely from ECG sig-
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als. Being able to make such predictions would be of great advan-

age to preventive medicine, especially in ambulatory/clinical situations

23,24] and military environments [25] . 

The task of BP prediction from ECG signals has been approached

rom the point of analyzing the relationship between morphological

hanges in ECG and BP at a very coarse level [26,27] . In our previous

ork, we approached the problem from another side, relying on com-

lexity analysis (whose reliability is previously proved for other medical

onditions [28–30] ) and machine learning. Relying on the literature,

e applied a band-pass Butterworth filter, allowing frequencies from

.30 Hz up to 50 Hz. We chose the lowest frequency to be 0.30 Hz since

t assures removing the baseline wander without deforming the ECG

ignal [31] . We obtained promising results when predicting the systolic

SBP), the diastolic (DBP), and the mean arterial pressure (MAP) [32] . 

In this paper, we follow an information fusion paradigm, combining

t with a specific data-driven preference approach [33] aimed at pre-

icting blood pressure from ECG signals. The idea is to extract features

rom the ECG signal by applying different settings of parameters used

or preprocessing (i.e. sampling length and baseline removal cut-off fre-
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uencies), in order to produce different datasets, which will be further

rocessed and used in order to learn SBP, DBP, and MAP predictive mod-

ls. Since the lowest ECG component is known to occur at 0.05 Hz [34] ,

y setting the lowest frequency to start from 0.05 Hz, up to 0.50 Hz, with

he step of 0.05 Hz, we decided to fuse the information from multiple

redictive models to achieve as accurate and reliable prediction as possi-

le. Furthermore, in our previous work [32] , we relied on the statement

hat 30 s long ECG segments are proved to carry enough information

35–37] for creating robust estimations. In this paper, we inspect mul-

iple signal length 10 s, 20 s and 30 s. The upper limit is chosen as the

aximum affordable time not transcending the minimum time needed

o perform the traditional cuff-based BP measurements. 

The contributions of the paper are as follows: 

• A methodology for fusing multi-level information for learning a pre-

dictive model for blood pressure using ECG sensor-fused data. 
• Models (i.e. configurations) evaluation, using ECG signals with dif-

ferent lengths, 10 s, 20 s, and 30 s, filtered with different cut-off

frequencies starting from 0.05 Hz, up to 0.50 Hz, with the step of

0.05 Hz. 
• A contribution to the arguments published in the literature dis-

cussing the optimal ECG sample lengths needed for building predic-

tive models [35–37] , as well as the lower frequencies where the ECG

components overlap with the baseline wander noise [31,38–40] . 
• We identify that fusing models learned for different configurations

can improve the results. 

In the reminder of the paper, we first explain the problem ( Section 2 ).

n Section 3 , we present an overview of the related work. In Section 4 ,

e present the multi-level information fusion methodology for learning

 BP predictive model using sensor data. We present the experimental

esults obtained from the evaluation in Section 5 followed by a discus-

ion in Section 6 . Finally, we present the conclusions and the directions

or future work in Section 7 . 

. Problem definition 

A biomedical signal processing system encompasses the biological

ystem of interest, the sensors used to capture the activity of the biomed-

cal system and the methodology developed to analyze the signals and

xtract the desired information [41] . In our study, the analyzed bio-

ogical system is the heart system whose electrical activity is presented

hrough the ECG signals. There are two phases for managing the blood

ow,a systole phase known as pumping phase, and a diastole phase

nown as filling phase. The pressure that the blood flow causes on the

lood vessels walls is referred to as BP and is measured in millimeters of

ercury (mmHg). The maximum pressure during one heart beat is the

BP and the minimum pressure in between two heart beats is DBP. 

Having proved the relation between the complexity features of the

CG signals and the BP [32] , we intent to discover the most reliable ECG

ettings in order to produce as accurate predictions as possible. The work

s inspired by real-life civil and military emergency situations where we

re not always guaranteed of placing desired ECG sensors, or that there

ill be enough time to measure long ECG samples. The applicability

f this research is mostly seen in specific occasions where there is a

ack of medical equipment, and thus it can be combined with additional

obile technology in order to assure the transfer of the medical data to

he remote hospital centers [42–44] . 

. Related work 

An overview of techniques and approaches based on the photo-

lethysmographic (PPG) signal for non invasive and continuous mea-

urement of blood pressure is presented at [45] . Gravina et al. [46] pro-

ide a comprehensive review of the state-of-the-art techniques on multi-

ensor fusion in the area of Body Sensor Networks. The advantages of
25 
uch approach are particularly found in the physical activity recogni-

ion field [47] , emotion recognition [48,49] , and health in general [50] .

owever, multi-sensor data fusion requires sophisticated signal process-

ng techniques, since the wearable sensor devices are characterized with

imited computational power and storage capacity. Even though, fusing

ata from various and diverse sensors assures the inference of high qual-

ty information, it is still a demanding task for the developed monitoring

pplications as more complex methods are applied for signal preprocess-

ng, features extraction, and machine learning. 

Working with ML models, at the end, the learned predictive models

hould be evaluated. For this reason different performance metrics can

e applied on a test set and regarding them the best predictive model

or the specific application scenario is selected [51] . These performance

etrics are related to different properties that describe the quality of

olutions. There are studies in which researchers select the best model

ased only on one performance metric or they report the results for

everal performance metrics and then explain them for each metric sep-

rately using statistical analyses [52,53] . Recently, researchers are not

nly interested in results obtained for each performance metric sepa-

ately, and this is not only a case in ML, but they want to make a general

onclusion in which the results for all of them will be fused. One way to

reat the problem of evaluation regarding a set of performance metrics

s to treat them as a multiple criteria for which a set of predictive models

i.e., algorithms, alternatives) are evaluated. This is a well-known prob-

em in decision making, for which PROMETHEE methods [54] are used

o solve a decision problem in which a set of alternatives are evaluated

ccording to a set of criteria that are often conflicting. The idea behind

hese methods is that an evaluation matrix is constructed, in which each

lternative is estimated for each criteria. They perform pairwise com-

arisons between all the alternatives for each criteria to provide either

 complete or partial rankings of the alternatives. They are applicable

n different domains such as, business, chemistry, manufacturing, social

ciences, agriculture and medicine [54–56] . Recently, they were also

sed in a data-driven approach for evaluating multi-objective optimiza-

ion algorithms regarding different performance metrics [33] . In this

tudy, all involved performance metrics are equal, but the influence of

ach performance metric is fused, based on its estimated performance

ccording to its entropy. 

. Methodology 

Using the idea of information fusion, we propose a multi-level infor-

ation fusion methodology aimed to predict SBP, DBP, and MAP from

ingle ECG signal. Fig. 1 explains the complete methodology, which con-

ists of five different levels: 

• Level 1. Since we measure a single phenomena (ECG) with multiple

sensors, the data is collected (i.e. fused) into a single pool used for

knowledge discovery. 
• Level 2. Next, feature datasets are extracted from multiple data

sources (multiple sensors), representing signals sampled at differ-

ent lengths and filtered with different cut-off frequencies for noise

removal. This step is essential since it assures that none of the ECG

information will be lost when filters for baseline removal are ap-

plied, and at the same time it assures that the baseline information

will be removed and will not affect the prediction models. The fea-

tures for each dataset are extracted following the same procedure.

The number of features, and their interpretation is the same across

datasets, however, the values differ depending on the length of the

signal and the cut-off frequency that are used. Later in the text, these

feature sets referred to as “different configurations ”, explaining the

diversity in sample lengths and cut-off frequencies. 
• Level 3. Further, each of the different datasets is used as input to a

stacking procedure for BP classification. Since we apply a stacking

based classification, the outputs from all classifiers are fused and

used as an input into a single META classifier [57] ( features-level
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Fig. 1. The methodology for SBP, DBP and MAP prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Application of data fusion for BP prediction in each 

methodology step. 

Step Fusion level 

ECG data gathering Multi-sensor fusion 

Data preprocessing Multi-sensor fusion 

ML (Classification) Information fusion 

ML (Regression) Information fusion 

Regression models fusion Information fusion 

Table 2 

Sensors and datasets summary information. 

Dataset Reliability Participants Age 

Cooking hacks [62] [65–67] 16 16–72 

180 ∘ eMotion FAROS [61] [68–70] 3 25–27 

Zephyr Bioharness module [63] [71–74] 14 20–73 

Savvy sensor platform [60] [75,76] 21 15–54 

Charis Physionet database [64] [77] 7 20–74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

p  

r  

m  

d  

s  

g  

g  

e

4

 

E  

s  

[  

u

 

i  

p  

j  

a  

p  

c  

i  

i  

b

fusion ). Due to the nature of the samples, we use two distinct split-

ting procedures for evaluation, from which we obtain multiple per-

formance metrics. Next, a data-driven preference approach based on

the PROMETHEE method [54] is applied to select the best classifi-

cation model for each feature dataset. The selection itself can also

be considered as performance metrics fusion , since it selects the

best training and validation set for each configuration. At this level,

we have information fusion , since information covering by differ-

ent performance metrics is merged to select the best training and

validation set for each configuration. 
• Level 4. Having chosen the most representative feature dataset for

each different configuration, regression models are built for each

feature dataset, considering each of the BP classes, with the aim to

predict the real SBP, DBP and MAP values. At this level, a decision-

level fusion is applied since the final prediction on the SBP, DBP,

and MAP values is made by using the probabilities produced in the

previous Level 3. Next, these models are ranked by using the same

ranking approach as in Level 3; the difference is that the performance
26 
metrics used are those for evaluation of regression models. At this

level, we have information fusion , since information provided by

the regression model for each BP class is merged together to produce

a single prediction for SBP, DBP, and MAP for each configuration. 
• Level 5. At this level the information obtained from the regression

models for all configuration is merged together to obtain a single

prediction for SBP, DBP, and MAP. The information is fused by us-

ing the influence of each regression model, which is estimated by

using the rankings of the training and the validation sets on which

the regression models are trained and evaluated, correspondingly.

These rankings come from the evaluation of the classifiers used for

each configuration since from this evaluation the selection of the

training and the validation set for each configuration is made. Here,

information fusion is performed, since information from different

models is fused to obtain a single value prediction for SBP, DBP, and

MAE. 

Table 1 provides a summary of data fusion levels recognized in each

tep of the BP prediction methodology. 

Fig. 1 provides a description of the steps of the methodology pro-

osed for SBP, DBP, and MAP prediction, focusing on the modules for

anking the developed ML models according to a set of performance

etrics and selecting the most suitable accordingly. A comprehensive

escription of the ML approach for developing the classification is pre-

ented in [32] . The regression problem is tackled as a multi-target re-

ression task [58,59] , in contrast to building separate independent re-

ression models, as was done in [32] . The following subsections describe

ach of the modules presented in Fig. 1 . 

.1. ECG Signals acquisition 

To create reliable and robust models, we used five distinct sources of

CG data, four of which we obtained from commercially available ECG

ensors [60–63] and one from the online available Physionet database

64] . Each ECG signal is accompanied with reference SBP and DBP val-

es measured in parallel by using electronic sphygmomanometer. 

Table 2 provides summary information for each sensor, as well as

ts reliability considered within the available literature, the number of

articipants measured with the sensor, and their age. All the human sub-

ects involved in the research with commercial sensors have signed an

greement allowing their ECG data to be used for research goals. The

articipants are of diverse age, health status, personal estimation of the

urrent stress level, and were measured in both moving (normal walk-

ng) and sitting positions. The measurements obtained from the Phys-

onet database are explicitly reported to be form patients suffering from

rain injuries. 
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More sensors details as well as datasets public availability informa-

ion can be read in [32] . 

.2. ECG preprocessing 

ECG sampling refers to the length of the ECG sample that is processed

n the feature extraction module. The baseline removal refers to removal

f noise caused by respiration. 

Taking into account the different signal lengths 10 s, 20 s, and

0 s, and the different cut-off frequencies starting from 0.05 Hz, up to

.50 Hz, with the step of 0.05 Hz, 30 different datasets (configurations)

ere created, which were processed in the feature extraction module. 

.3. Feature extraction 

Recently published work relies on multiple physiological signal anal-

sis for BP prediction, taking into account morphological features of the

ignal [17,20–22,78–80] . We propose approaching the problem from

nother perspective: representing the ECG information via complexity

etrics: signal mobility, signal complexity, fractal dimension, autocor-

elation and entropy [32] . 

Therefore, each of the 30 datasets, created in the previous module

xplained in Section 4.2 , has gone through the process of feature extrac-

ion, calculating the metrics as follows. 

.3.1. Signal mobility 

Given 𝑥 𝑖 , 𝑖 = 1 , 𝑁 is the ECG signal of length N and 𝑑 𝑗 = 𝑥 𝑗+1 − 𝑥 𝑗 is

he first-order variations in the signal, then the first-order factors, S 0 
nd S 1 , are calculated as: 

 0 = 

√ ∑𝑁 

𝑖 =1 𝑥 
2 
𝑖 

𝑁 

(1)

 1 = 

√ ∑𝑁−1 
𝑗=2 𝑑 

2 
𝑗 

𝑁 − 1 
(2)

The signal mobility quantitatively measures the level of variation in

he signal. It is calculated as a ratio between the factors S 1 and S 0 : 

𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 

𝑆 1 
𝑆 0 

, (3)

.3.2. Signal complexity 

Given the first-order variation of the ECG signal d j , 𝑗 = 1 , 𝑁 − 1 , the

econd-order variation of the signal is presented by 𝑔 𝑘 = 𝑑 𝑘 +1 − 𝑑 𝑘 . Then,

he second-order factor is calculated as: 

 2 = 

√ ∑𝑁−2 
𝑘 =3 𝑔 

2 
𝑘 

𝑁 − 2 
, (4)

Hereupon, the complexity is calculated by using the first-order and

he second-order factors: 

𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 

√ 

𝑆 2 
2 

𝑆 1 
2 − 

𝑆 1 
2 

𝑆 0 
2 (5)

Both the signal mobility and signal complexity were computed by

sing the Hjorth parameters method [81] . 

.3.3. Fractal dimension 

Fractal dimension measures the self-similarity of the signal. By zoom-

ng and comparing different portions, it describes fundamental patterns

idden in the signal. Higuchi algorithm [82,83] has been used to calcu-

ate the fractal dimension. The method works with a set of k subseries

ith different resolutions, creating a new time series X k , for 𝑚 = 1 , 𝑘 : 

 

𝑚 
𝑘 
∶ 𝑥 ( 𝑚 ) , 𝑥 ( 𝑚 + 𝑘 ) , 𝑥 ( 𝑚 + 2 𝑘 ) , … , 𝑥 ( 𝑚 + ⌊𝑁 − 𝑚 ⌋𝑘 ) (6)
𝑘 

27 
The length of the curve 𝑋 

𝑚 
𝑘 
, l ( k ) is calculated as: 

( 𝑘 ) = 

( 
∑⌊𝑁− 𝑚 ∕ 𝑘 ⌋

𝑖 =1 |𝑥 ( 𝑚 + 𝑖𝑘 ) − 𝑥 ( 𝑚 + ( 𝑖 − 1) 𝑘 ) |( 𝑁 − 1)) 

( ⌊𝑁− 𝑚 
𝑘 

⌋) 𝑘 (7)

Then, for each k in range 1 to 𝑘 max , the average length is calculated

s the mean of the k lengths l ( k ) for 𝑚 = 1 , … 𝑘 . The fractal dimension

s the estimation of the slope of the plot ln ( l ( k )) vs. ln (1/ k ). 

.3.4. Autocorrelation 

The similarity between the signal and its shifted version is measured

ia autocorrelation. Let 𝜏 be the amount of shift, and then the autocor-

elation is calculated as: 

 𝑥𝑥 ( 𝜏) = ∫
+ inf 

− inf 
𝑥 ( 𝑡 ) 𝑥 ( 𝑡 − 𝜏) 𝑝 𝑥𝑥 ( 𝑥 ( 𝑡 ) , 𝑥 ( 𝑡 − 𝜏)) 𝑑𝑡, (8)

here 𝑝 𝑥𝑥 ( 𝑥 ( 𝑡 ) , 𝑥 ( 𝑡 − 𝜏)) presents the joint probability density function of

 ( t ) and 𝑥 ( 𝑡 − 𝜏) . 

.3.5. Entropy 

Entropy expresses the randomness of the signal. The decrease of en-

ropy often indicates a disease [84] . The amount of information is ex-

ressed through the concept of probability. Let p i denote the probability

f each outcome x i within the ECG signal X for 𝑖 = 1 , 𝑁 − 1 . Then, en-

ropy is calculated as: 

𝑛𝑡𝑟𝑜𝑝𝑦 = 

𝑁−1 ∑
𝑖 =0 

𝑝 𝑖 log ( 
1 
𝑝 𝑖 
) (9)

.4. Classification 

Having created 30 datasets (configurations) described by the five

eatures for each of them we extracted the feature values. The first step

or the SBP, DBP and MAP prediction according to our methodology is

o predict the BP class. Each classifier predicts the probability of a given

eature vector to belong in each of the k BP classes. 

Classification itself follows a stacking design, in which we model

he problem by using seven different classifiers: Bagging [85] , Boosting

86] , SVM [87] , K-means [88] , Random Forest [89] , Naive Bayes [90] ,

nd J48 [91] . The output probabilities from each of them for all the

eature vectors to belong in each class, comprise a new feature vectors

pon which a META classifier (Random Forest) is trained. Details of the

esign are provided in [32] . 

.5. Ranking of classifiers 

For each configuration, a classifier is trained by using a training set

nd it is evaluated on a corresponding validation set. The procedure is

epeated m times on different choice training and validation sets. Thus,

or each configuration, m classifiers are trained. 

To evaluate the performance of the classifiers trained for each con-

guration, the focus is not only on one performance metric, but on a set

f 17 performance metrics, including: 

• Accuracy (ACC) - represents the fraction between the number of

correct predictions by the total number of predictions made. 
• Cohen’s Kappa - compares the observed accuracy (the number of

correctly classified instances) with the expected accuracy (taking

into account the number of instances in each class, along with the

number of instances that the classifier agreed with the ground truth

label). 
• Precision (PR) - captures the effect of the large number of negative

examples on the classifier’s performance, by comparing false posi-

tives (FP) to true positives (TP) rather than true negatives (TN), i.e.

it measures how many of the predicted instances were TP. 
• Recall (RC) - to measure how many of the TP instances were pre-

dicted. 
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Table 3 

Decision matrix. 

pm 1 pm 2 ... pm p 

C 1 pm 1 ( C 1 ) pm 2 ( C 1 ) ... pm p ( C 1 ) 

C 2 pm 1 ( C 2 ) pm 2 ( C 2 ) ... pm p ( C 2 ) 

⋮ ⋮ ⋮ ⋮ 
C m pm 1 ( C m ) pm 2 ( C m ) ... pm p ( C m ) 
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• F-Measure - measures the trade-off between recall and precision giv-

ing equal importance to recall and precision. 
• Area Under PRC - precision-recall curve does not account for TN,

since TN is not a component of either Precision or Recall. Given

there are more negatives (normal) than positives (hypertension),

PRC might be very informative evaluation metric of the performance

of the classifier. Having a model at the upper right corner, means that

the classifier gets only the TP with no FP and no false negatives (FN)

at all and thus is perfect classifier. 
• Area Under ROC - the ROC curve plots the True Positive Rate (TPR)

vs. False Positive Rate (FPR). Therefore achieving a model at the

upper left corner, means that the classifiers is getting no FP at all

and thus is perfect classifier. 
• Matthews Correlation (COR) - takes the advantage from all four

metrics TP, FP, TN and FN to calculate the correlation coefficient

between the observed and predicted classifications [92] . 
• Relative absolute error (RAE) - is an error measure relative to a

simple predictor, meaning it takes the total absolute error and nor-

malizes it by dividing it by the one of the simple predictor. 
• Root relative squared error (RRSE) - takes the total squared error

and normalizes it by dividing by the total squared error of the simple

predictor. The square root reduces the error to the same dimensions

as the problem at hand. 
• Root mean squared error (RMSE) - explains the standard deviation

of the prediction error.; 
• Informedness (INF) - quantifies how informed a classifier is for the

specified class. It provides insight into how consistently the classifier

predicts the class [93] . 
• Markedness (MAR) - quantifies how marked a class is for the spec-

ified classifier, i.e. how consistently the class has the classifier as a

marker by combining measures about correct classifications [93] . 
• Micro F-measure (MF) - aggregates the contributions of all classes

to compute the average F-measure by considering the total TPs, FNs

and FPs. 
• Log likelihood (LL) - presents the probability of the observed pre-

diction given the real class. 
• Mutual information (MI) - measures whether the real and the pre-

dicted labels are statistically depended. 
• Pearson’s chi-squared test (PRS) - to measure whether the ob-

served and expected frequencies are the same by comparing the pre-

dicted contingency table to an expected table. 

.5.1. The PROMETHEE II 

The idea behind this process is to select the best model that can be

earned for a particular “length-frequency ” configuration (as explained

bove) and for this reason we need to rank the classifiers, such that the

ontribution of each performance metric (PM) is taken into account. Let

s consider that the number of PMs used is p . 

A comparison needs to be made between m classifiers (i.e., alterna-

ives) regarding p performance evaluation metrics (i.e., criteria). One

ay to do this is to use the PROMETHEE methods. They are used in de-

ision making to solve a decision problem in which a set of alternatives

re evaluated according to a set of criteria that are often conflicting.

or the method, an evaluation matrix is constructed, in which each al-

ernative is estimated for each criteria. The method performs pairwise

omparisons between all the alternatives for each criteria to provide

ither a complete or partial rankings of the alternatives. 

Let 𝐶 = { 𝐶 1 , 𝐶 2 , … , 𝐶 𝑚 } be the set of classifiers we want to compare

egarding the set of performance metrics 𝑃 𝑀 = { 𝑝𝑚 1 , 𝑝𝑚 2 , … , 𝑝𝑚 𝑛 } . The

ecision matrix is a m × p matrix (see Table 3 ) that contains the values

btained for the classifiers for each PM separately. 

The appropriate method in our case is PROMETHEE II. It is based on

airwise comparisons that need to be made between all classifiers for

ach performance metric. The differences between values for each pair

f classifiers according to a specified performance metric are taken into

onsideration. For larger differences the decision maker might consider
28 
arger preferences. The preference function of a performance metric for

wo classifiers is defined as the degree of preference of classifier C 1 over

lassifier C 2 as seen in the following equation: 

 𝑗 ( 𝐶 1 , 𝐶 2 ) = 

{ 

𝑝 𝑗 ( 𝑑 𝑗 ( 𝐶 1 , 𝐶 2 )) , 𝑖𝑓 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 

𝑝 𝑗 (− 𝑑 𝑗 ( 𝐶 1 , 𝐶 2 )) , 𝑖𝑓 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 
, 

(10) 

here 𝑑 𝑗 ( 𝐶 1 , 𝐶 2 ) = 𝑝𝑚 𝑗 ( 𝐶 1 ) − 𝑝𝑚 𝑗 ( 𝐶 2 ) is the difference between the val-

es of the classifiers for the performance metric pm j and p j ( · ) is a gener-

lized preference function assigned to the performance metric. Six types

f generalized preference functions are known to exist [94] . Some of

hem require certain preferential parameters to be defined, such as the

reference and indifference thresholds. The preference threshold is the

mallest amount that is assumed as preference, while the indifference

hreshold is the greatest amount of difference that is insignificant. In

ur case, a V -shape generalized preference function is used for each

erformance metric, in which the threshold of strict preference, q , is

et to the maximum difference that exists for each preference metric

or each configuration. The V -shape preference function is presented in

q. 11 . Using this preference function, all difference values are take into

ccount using a linear function. 

 ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 , 𝑥 ≤ 0 
𝑥 

𝑞 
, 0 ≤ 𝑥 ≤ 𝑞 

1 , 𝑥 > 𝑞 

, (11)

After selecting the preference function for each PM, the next step

s to define the average preference index and outranking (preference

nd net) flows. The average preference index for each pair of classifiers

ives information of global comparison between them using all PMs.

he average preference index can be calculated as: 

( 𝐶 1 , 𝐶 2 ) = 

1 
𝑝 

𝑝 ∑
𝑗=1 

𝑤 𝑗 𝑃 𝑗 ( 𝐶 1 , 𝐶 2 ) , (12)

here w j represents the relative significance (weight) of the j th PM. The

igher the weight value of a given PM the higher its relative signifi-

ance. The selection of the weights is a crucial step in the PROMETHEE

I method because it defines the priorities used by the decision-maker.

n our case, we used the Shannon entropy weight method [33] . For the

verage preference index, we need to point out that it is not a symmetric

unction, so 𝜋( C 1 , C 2 ) ≠ 𝜋( C 2 , C 1 ). 

To rank the classifiers, a net flow for each classifier needs to be cal-

ulated. It is the difference between the positive preference flow, 𝜙( 𝐶 

+ 
𝑖 
) ,

nd the negative preference flow of the classifier, 𝜙( 𝐶 

− 
𝑖 
) . The positive

reference flow gives information how a given classifier is globally bet-

er than the other classifiers, while the negative preference flow gives

he information about how a given classifier is outranked by all the other

lassifiers. The positive preference flow is defined as: 

( 𝐶 

+ 
𝑖 
) = 

1 
( 𝑚 − 1) 

∑
𝑥 ∈𝐶 

𝜋( 𝐶 𝑖 , 𝑥 ) , (13)

hile the negative preference flow is defined as: 

( 𝐶 

− 
𝑖 
) = 

1 
( 𝑚 − 1) 

∑
𝑥 ∈𝐶 

𝜋( 𝑥, 𝐶 𝑖 ) . (14)

he net flow of a classifier is defined as: 

( 𝐶 𝑖 ) = 𝜙( 𝐶 

+ ) − 𝜙( 𝐶 

− ) . (15)
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The PROMETHEE II method ranks the classifiers by ordering them

ccording to decreasing values of net flows. 

.6. Regression 

Upon ranking the classifiers, the training sets that were used for cre-

ting the classification models that produced best results for each con-

guration, were used to train regression models in order to determine

pproximate SBP, DBP, and MAP values. MAP is calculated by using the

ollowing equation [95] : 

𝐴𝑃 = 

𝑆𝐵𝑃 + 2 ×𝐷𝐵𝑃 

3 
(16)

At this phase, we train three multi-target regression models, where

he targets are the SBP, DBP, and MAP values. The three multi-target re-

ressions refer to the three distinct BP classes, which will be further ex-

lained, and therefore we obtained MR ij models, for 𝑖 = 0 , 1 , 2 denoting

he classes and 𝑗 = 0 , 1 , 2 denoting SBP, DBP and MAP, correspondingly.

he training set is split into three training sets according to the BP class.

ach multi-target regression model is an ensemble (random forest) of

redictive clustering trees, which generalize classification trees [96] . 

The idea in this phase is to fuse the probabilities produced by the

ETA classifier with the values predicted by the MR models. Hereupon,

he final BP predictions are obtained as follows: 

𝐵𝑃 = 

2 ∑
𝑖 =0 

𝑝 𝑖 𝑀𝑅 𝑖 0 ; (17)

𝐵𝑃 = 

2 ∑
𝑖 =0 

𝑝 𝑖 𝑀𝑅 𝑖 1 ; (18)

 𝐴𝑃 = 

2 ∑
𝑖 =0 

𝑝 𝑖 𝑀 𝑅 𝑖 2 ; (19)

here p 0 , p 1 , and p 2 are the probabilities for the current feature vector

o belong in each of the BP classes. 

.7. Ranking of regression models 

After we obtain regression models, the methodology used for classi-

ers ranking is used again with the difference the performance metrics

hat are used are those for regression evaluation. The method of ranking

he regression models includes training on separate subset, followed by

erformance estimation using unseen data. The three regression models

ere evaluated by using the correlation between the real and the pre-

icted values, the Mean Absolute Error (MAE), and Root Mean Squared

rror (RMSE). This is made with the purpose to select one best configu-

ation that can be used for SBP, DBP, and MAP prediction. 

• Correlation coefficient (COR) - presents the correlation between

the real and the predicted values, for which the Pearson correlation

coefficient is calculated. 
• Mean squared error (MSE) - is the average of squared differences

between the predicted and the actual BP values and shows how con-

centrated the data is around the line of best fit. 
• Mean Absolute Error (MAE) - is the average error obtained from

the absolute differences between the real and the predicted values. 
• Root Mean Squared Error (RMSE) - is used to represent a higher

weight for the large errors, which is especially important for the BP

problem, meaning the differences between the real absolute and the

predicted values are first squared, then averaged, and afterwards a

square root of the average is taken. 

Using the previously explained methodology, the regression models

re ranked considering the information gained from each performance

etric. 
29 
.8. Regression models fusion 

The main goal of the proposed methodology is to fuse the informa-

ion of each configuration in order to predict the SBP, DBP, and MAP

alues. For this reason, an information fusion is performed by merging

he information of all regression models (i.e. configurations) using their

eparate influences. The influence is estimated using the rankings for

he training and the validation sets on which the regression models are

rained and evaluated. These rankings come from the evaluation of the

lassifiers used for each configuration because from this evaluation the

election of the training and the validation set for each configuration is

ade. 

The obtained rankings, that actually provide an information of how

ood is the particular configuration comparing to the others, are nor-

alized for their sum to be equal to 1. Thus, once a regression model

redicts a value, that value is multiplied by the ranking value of the

onfiguration for that particular regression model. Having the predic-

ions of all regression models multiplied by their rankings, they are fused

summed up) to produce a single reliable SBP, DBP and MAP prediction.

Formally, let P be the patient’s ECG for which SBP, DBP and MAP

eed to be predicted. Denoting the rank for the i -th configuration with

 i and the total number of models with T , the normalized rank, NR i is

alculated as follows: 

𝑅 𝑖 = 

( 𝑇− 𝑅 𝑖 ) 
𝑇 ∑𝑇 

𝑖 =1 
( 𝑇− 𝑅 𝑖 ) 

𝑇 

(20) 

Eventually, the predicted SBP, DBP or MAP values are obtained as

 sum of the contributions from all the models. Let FP denote the fused

redicted value (i.e. it can be the value for SBP, DBP, or MAP), NR is the

ormalized rank and the p is the predicted value. Then the prediction

an be calculated as expected value from all configurations, which is

he sum of all predictions multiplied by the corresponding ranks of the

articular configuration, as explained in the following equation: 

 𝑃 = 

𝑇 ∑
𝑖 =1 

𝑝 𝑖 𝑁𝑅 𝑖 (21)

. Evaluation 

.1. Level 1: Data collection 

The data collection explained in Section 2 was crucial for achiev-

ng appropriate design of the study. Each human subject was measured

nly by one ECG sensor (i.e. Cooking hacks, 180 eMotion Faros, Zephyr

ioharness module, and Savvy sensor platform) and the ground truth

or the blood pressure SBP and DBP reference values were measured in

arallel using a medically certified electronic sphygmomanometer. The

lectronic sphygmomanometer (MyTech) is a cuff-based device certified

y Conformité Européenne (CE) and US Food and Drug Administration

FDA) for blood pressure monitoring and has been previously used as

 reliable device in other studies [97,98] . For a given time, the device

rovides two values, one for SBP and one for DBP. The human subjects

hat had the ECG sensors attached to their chest were in parallel peri-

dically measured for the blood pressure with the sphygmomanometer.

ince our goal was to develop a methodology that can be used in occa-

ion where there is a lack of standard medical equipment, we measured

hort ECG signals and therefore, there were not big deviations for the

BP and DBP values that were measured periodically. In the case of

he Charis Physionet database, each ECG signal is associated with the

ontinuous reference SBP and DBP values. In this case to each signal,

verage values of the SBP and DBP values were assigned. 

Given that each measurement is accompanied with SBP and DBP val-

es, we enriched this information by including the calculated of MAP

nd the BP class. To obtain the BP class and map the ECG measurements

ccordingly, we used the publicly available scheme presented in Table 4

99,100] . Even though, the BP classes seem not to be mutually exclusive,
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Table 4 

Rules and categorization. 

Joined class Class SBP (mmHg) Logical DBP (mmHg) 

Normal HPTN < = 90 OR < = 60 

N 90–119 AND 60–79 

Prehypertension PHTN 120–139 OR 80–89 

Hypertension S1HTN 140–159 OR 90–99 

S2HTN > = 160 OR > = 100 

ISHTN > = 140 AND < 90 

HTNC > = 180 OR > = 110 

Table 5 

Descriptive statistics of the targets. 

Target Mean Median Mode SD Var Min Max 

SBP 128.31 126 115 20.89 436.42 84 208 

DBP 71.97 71 68 11.76 138.41 37 134 

MAP 90.75 89 85 11.24 126.37 53 152 
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e solved the problem of giving priority to the more severe BP condi-

ions by checking the “AND ” conditions at the end of the ECG samples

apping procedure. To solve the imbalanced-class data, we grouped BP

lasses into three main categories: hypotension (HPTN) and normal (N)

s Normal class (denoted as 0); prehypertension (PHTN) as Prehyper-

ension class (denoted as 1); and stage 1 hypertension (S1HTN), stage

 hypertension (S2HTN), isolated systolic hypertension (ISHTN), and

ypertensive crisis (HTNC) as Hypertension class (denoted as 2). 

.2. Level 2: Feature extraction 

Collecting the data, by acquisition of measurements from different

ources measured at different sampling rates and under various condi-

ions, we organized them in three datasets. Each dataset contains one x

econds long random sample per measurement, where x = 10 s, 20 s, and

0 s. Table 5 provides descriptive statistics for the targets (SBP, DBP and

AP) in general, no matter if 10, 20 or 30 s sample lengths are taken

rom the signals. 

As mentioned in Section 4.2 , the baseline wander and the ECG infor-

ation might overlap, and if not cut-off appropriately, either important

nformation might be lost, or, a sensor-biased predictor may be devel-

ped. Considering the literature, we decided to find the proper cut-off

requency experimentally. Each of the three datasets was preprocessed

ith 10 different cut-off frequencies, starting from 0.05 Hz up to 0.50 Hz

y step of 0.05 Hz. Calculating the complexity features for each, we ob-

ained 30 different configurations, or, 30 feature datasets used for train-

ng classification models for BP prediction and multi-target regression

odels for predicting the SBP, DBP, and MAE values. 

.3. Level 3: Information fusion using the evaluation information from the 

lassifiers for each configuration 

The datasets should be split on an appropriate way in terms of find-

ng the best training, validation and testing sets, which will be used for

earning classification models for BP prediction and multi-target regres-

ion models for SBP, DBP, and MAE prediction. Taking into account that

e have multiple independent measurement for each subject (i.e. par-

icipant) and as the number of measurements varies for each subject ,

e proposed and evaluated two approaches as follows: 

1. Traditional split : In the first approach, each measurement is consid-

ered to be independent. Before start of the experiment, chosen ran-

domly, 15% of all measurements has been taken as test set and are

removed from the pool. Hereafter, for each of the 30 configurations,

the rest of the pool is 30 times split by using 75% for training and

25% for validation. For each split, a classifier is created as described
30 
in Section 4.4 . As an output, we have obtained 30 performance ma-

trices with dimension 30x17, where 30 is the number of splits and

17 is the number of performance metrics (described in Section 4.5 )

obtained by using the corresponding validation set. 

2. Custom split : In the second approach, we follow the rule that if a

subject is included in one set, none of its measurements may occur

in another set. Similarly as in the previous approach, 15% random

subject with all their measurements have been taken as distinct test

set and are removed from the pool. Following the same rule, for

each of the 30 configurations, the rest of the pool is 30 times split

by using 75% of the subjects for training and 25% of the subjects

for validation. For each split, a classifier is created, and again, we

have obtained 30 performance matrices of same dimensions as in the

previous case. 

Hereupon, the ranking method described in Section 4.5.1 is applied

o find the best performance train/validation split in each configura-

ion, considering not one performance metric, but a set of 17, of which

4 (ACC, KAPPA, PRC, ROC, F, COR, PR, RC, INF, MAR, MF, LL, MI,

nd PRS) require maximization, and 3 (RAE, RRSE, and RMSE) require

inimization. The chosen best train/validation split in each configu-

ation has produced the results presented in Tables 6 and 8 , for the

raditional and custom split correspondingly. The rows represent the

onfigurations, starting from 10 s with 0.05 Hz, up to 30 s with 0.50 Hz.

Taking into account the best representative from each configuration,

e applied the same ranking method to find the best configuration.

he last column in tables 6 and 8 presents the results from the ranking

ethod. In the case of the traditional split, the best classifier is obtained

rom the dataset containing features calculated with signal length of 30 s

nd filtered by using cut-off frequency of 0.35 Hz. In the case of the cus-

om split, the best classifier is obtained for the configuration in which

he signal length is 10 s and the cut-off frequency of 0.30 Hz. 

To consider the influence of all trials, not only the best, we provided

n insight into the ranking of the mean performance values by config-

ration. For this reason, the results of each performance measure was

veraged across all trials for each configuration. The results for both

plitting procedures are presented in Tables 7 and 9 . Using them, in

he case of the traditional split, the best configuration is obtained using

ignal length of 30 s filtered with cut-off frequency of 0.50 Hz. On the

ther side, in the case of the custom split, the configuration with a signal

ength of 30 s and cut-off frequency of 0.10 Hz is ranked as the best. 

However, if we consider all four tables, it can be noted that the ranks

rom 1 to 10, presenting the degradation of the classifier in ascending

rder, are mainly focused in the 30 s-cluster of the feature datasets. 

.4. Level 4: Information fusion using the information from multi-target 

egression model for each BP class 

In the next step, each training set was split into three subsets accord-

ng to the BP class (0, 1, and 2). The three training subsets are used to

rain three multi-target regression models able to predict the SBP, DBP,

nd MAP values. 

Repeating the procedure for the selected representatives for all con-

gurations, we have obtained a classifier that produces probabilities for

 given feature vector to belong in each of the three BP classes, and

hree multi-target predicting machines able to produce SBP, DBP and

AP values. The final SBP, DBP and MAP values are computed by using

he Eqs. (17) –(19) , as described in Section 4.6 . By this step, we aim to

ntroduce the level of uncertainty by the classifier’s prediction over the

lasses. 

The methodology is tested on the external testing datasets we cre-

ted at the beginning, one per each spiting procedure. Tables 10 and 11

resent the regression results for the traditional and the custom case,

espectively. The rankings in both Tables 10 and 11 favor 30 s to be

ost informative with variable frequency of 0.40 Hz and 0.50 Hz in

oth cases, respectively. We need to mention that for applying the rank-
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Table 6 

Best classification results for each configuration following the traditional approach. 

Conf ACC KAPPA PRC ROC F COR PR RC RAE RRSE RMSE INF MAR MF LL MI PRS Ranking 

10/0.05 62.64 0.44 0.58 0.75 0.62 0.44 0.62 0.63 60.32 99.99 0.47 0.44 0.45 0.63 58.49 0.22 108.80 30 

10/0.10 63.02 0.45 0.59 0.75 0.63 0.44 0.63 0.63 60.70 98.98 0.47 0.44 0.45 0.63 62.04 0.23 113.45 29 

10/0.15 66.04 0.49 0.66 0.80 0.66 0.49 0.66 0.66 53.36 91.39 0.43 0.49 0.50 0.66 67.58 0.26 128.29 24 

10/0.20 66.79 0.50 0.66 0.80 0.66 0.50 0.66 0.67 52.74 91.80 0.43 0.50 0.52 0.67 76.05 0.29 139.57 21 

10/0.25 66.04 0.49 0.63 0.79 0.66 0.49 0.66 0.66 54.48 94.55 0.45 0.49 0.50 0.66 70.22 0.26 131.07 26 

10/0.30 67.17 0.51 0.67 0.81 0.67 0.51 0.67 0.67 52.88 93.77 0.44 0.51 0.51 0.67 74.61 0.28 140.49 20 

10/0.35 66.42 0.50 0.68 0.81 0.66 0.49 0.66 0.66 54.56 91.93 0.43 0.49 0.51 0.66 72.72 0.27 134.24 22 

10/0.40 69.43 0.54 0.66 0.81 0.69 0.54 0.69 0.69 49.32 90.30 0.43 0.54 0.56 0.69 92.99 0.35 164.39 14 

10/0.45 68.68 0.53 0.66 0.81 0.68 0.53 0.68 0.69 51.07 92.01 0.43 0.53 0.54 0.69 84.97 0.32 153.19 16 

10/0.50 70.57 0.56 0.67 0.81 0.71 0.56 0.71 0.71 47.80 91.31 0.43 0.56 0.55 0.71 89.11 0.34 169.56 8 

20/0.05 64.53 0.47 0.64 0.79 0.64 0.47 0.65 0.65 56.09 96.77 0.46 0.47 0.47 0.65 63.29 0.24 119.38 28 

20/0.10 66.04 0.49 0.64 0.78 0.66 0.49 0.66 0.66 56.55 96.33 0.45 0.49 0.49 0.66 69.30 0.26 130.68 27 

20/0.15 71.32 0.57 0.70 0.83 0.71 0.57 0.72 0.71 48.77 86.82 0.41 0.57 0.57 0.71 93.12 0.35 175.72 7 

20/0.20 67.92 0.52 0.69 0.82 0.68 0.52 0.68 0.68 50.09 87.66 0.41 0.52 0.52 0.68 75.98 0.29 143.74 17 

20/0.25 69.06 0.54 0.67 0.81 0.69 0.54 0.69 0.69 51.28 90.79 0.43 0.54 0.53 0.69 76.84 0.29 149.91 15 

20/0.30 66.04 0.49 0.69 0.82 0.66 0.49 0.66 0.66 52.90 92.99 0.44 0.49 0.49 0.66 71.55 0.27 133.50 23 

20/0.35 67.17 0.51 0.66 0.80 0.67 0.51 0.68 0.67 53.25 92.09 0.43 0.51 0.50 0.67 73.06 0.28 138.99 19 

20/0.40 69.06 0.54 0.69 0.82 0.69 0.53 0.69 0.69 48.28 87.86 0.41 0.53 0.54 0.69 93.23 0.35 161.51 12 

20/0.45 69.43 0.54 0.68 0.82 0.69 0.54 0.69 0.69 48.56 89.90 0.42 0.54 0.54 0.69 90.15 0.34 162.24 13 

20/0.50 72.45 0.59 0.72 0.84 0.72 0.59 0.72 0.72 44.67 85.49 0.40 0.58 0.59 0.72 99.74 0.38 184.55 3 

30/0.05 67.55 0.51 0.65 0.80 0.67 0.51 0.67 0.68 52.21 91.82 0.43 0.51 0.52 0.68 73.56 0.28 140.16 18 

30/0.10 66.04 0.49 0.63 0.79 0.66 0.49 0.66 0.66 52.52 95.07 0.45 0.49 0.50 0.66 73.00 0.28 132.83 25 

30/0.15 69.81 0.55 0.69 0.82 0.70 0.55 0.70 0.70 50.11 89.51 0.42 0.55 0.55 0.70 94.26 0.36 168.34 10 

30/0.20 72.08 0.58 0.68 0.82 0.72 0.58 0.72 0.72 47.05 89.65 0.42 0.58 0.59 0.72 94.15 0.36 177.48 6 

30/0.25 69.81 0.55 0.70 0.84 0.69 0.55 0.69 0.70 46.96 88.40 0.42 0.55 0.56 0.70 88.02 0.33 162.42 9 

30/0.30 69.81 0.55 0.71 0.83 0.69 0.55 0.69 0.70 47.57 89.27 0.42 0.55 0.57 0.70 86.39 0.33 160.76 11 

30/0.35 72.83 0.59 0.75 0.86 0.72 0.59 0.72 0.73 42.69 82.24 0.39 0.59 0.60 0.73 98.87 0.37 185.14 1 

30/0.40 73.58 0.60 0.69 0.83 0.73 0.60 0.73 0.74 42.64 86.07 0.41 0.60 0.61 0.74 102.81 0.39 194.63 2 

30/0.45 71.32 0.57 0.72 0.84 0.71 0.57 0.72 0.71 43.56 85.65 0.40 0.57 0.57 0.71 91.83 0.35 173.94 4 

30/0.50 71.32 0.57 0.74 0.85 0.71 0.57 0.71 0.71 46.81 86.16 0.41 0.57 0.58 0.71 89.51 0.34 170.30 5 

Table 7 

Mean classification results for each configuration following the traditional approach. 

Conf ACC KAPPA PRC ROC F COR PR RC RAE RRSE RMSE INF MAR MF LL MI PRS Ranking 

10/0.05 55.90 0.34 0.55 0.72 0.56 0.34 0.56 0.56 67.66 106.06 0.50 0.34 0.34 0.56 41.21 0.16 73.51 30 

10/0.10 57.14 0.36 0.55 0.72 0.57 0.36 0.57 0.57 65.98 104.75 0.49 0.36 0.36 0.57 44.73 0.17 79.91 29 

10/0.15 60.31 0.40 0.59 0.75 0.60 0.40 0.60 0.60 61.56 101.06 0.48 0.41 0.41 0.60 52.70 0.20 96.16 26 

10/0.20 59.58 0.39 0.59 0.75 0.59 0.39 0.60 0.60 61.48 101.11 0.48 0.39 0.40 0.60 52.82 0.20 94.83 27 

10/0.25 61.71 0.43 0.60 0.76 0.62 0.43 0.62 0.62 59.50 99.47 0.47 0.43 0.43 0.62 57.58 0.22 104.93 24 

10/0.30 61.72 0.43 0.61 0.76 0.62 0.43 0.62 0.62 59.39 99.42 0.47 0.43 0.42 0.62 59.62 0.22 107.92 23 

10/0.35 62.44 0.44 0.62 0.77 0.62 0.44 0.62 0.62 58.41 98.32 0.46 0.44 0.44 0.62 59.65 0.23 109.37 19 

10/0.40 62.36 0.44 0.62 0.77 0.62 0.44 0.62 0.62 58.14 98.21 0.46 0.44 0.44 0.62 59.76 0.23 109.30 20 

10/0.45 63.41 0.45 0.63 0.78 0.63 0.45 0.64 0.63 56.76 97.20 0.46 0.45 0.45 0.63 62.30 0.24 115.22 12 

10/0.50 64.54 0.47 0.64 0.79 0.64 0.47 0.65 0.65 55.09 95.66 0.45 0.47 0.47 0.65 66.12 0.25 122.79 9 

20/0.05 58.62 0.38 0.59 0.74 0.59 0.38 0.59 0.59 63.53 102.87 0.48 0.38 0.38 0.59 49.30 0.19 88.73 28 

20/0.10 59.99 0.40 0.60 0.75 0.60 0.40 0.60 0.60 61.16 100.92 0.48 0.40 0.40 0.60 54.65 0.21 98.10 25 

20/0.15 62.43 0.44 0.62 0.77 0.62 0.44 0.62 0.62 58.09 98.66 0.47 0.44 0.44 0.62 61.82 0.23 112.15 16 

20/0.20 62.15 0.43 0.62 0.77 0.62 0.43 0.62 0.62 57.95 98.19 0.46 0.43 0.43 0.62 61.28 0.23 110.71 18 

20/0.25 62.28 0.43 0.62 0.77 0.62 0.43 0.62 0.62 58.44 98.69 0.47 0.44 0.43 0.62 60.43 0.23 109.98 22 

20/0.30 62.30 0.43 0.62 0.77 0.62 0.43 0.62 0.62 57.57 98.31 0.46 0.44 0.44 0.62 60.86 0.23 110.67 17 

20/0.35 63.08 0.45 0.63 0.78 0.63 0.45 0.63 0.63 56.79 97.37 0.46 0.45 0.45 0.63 63.93 0.24 116.04 13 

20/0.40 63.03 0.45 0.63 0.78 0.63 0.45 0.63 0.63 57.01 97.40 0.46 0.45 0.44 0.63 64.69 0.24 116.94 14 

20/0.45 63.45 0.45 0.63 0.78 0.63 0.45 0.63 0.63 56.34 96.95 0.46 0.45 0.46 0.63 65.98 0.25 118.96 11 

20/0.50 64.13 0.46 0.64 0.79 0.64 0.46 0.64 0.64 55.59 95.93 0.45 0.46 0.46 0.64 67.94 0.26 123.58 10 

30/0.05 62.96 0.44 0.62 0.77 0.63 0.44 0.63 0.63 57.95 97.14 0.46 0.44 0.45 0.63 60.71 0.23 111.83 15 

30/0.10 62.20 0.43 0.62 0.77 0.62 0.43 0.62 0.62 58.17 98.56 0.46 0.43 0.43 0.62 61.49 0.23 111.13 21 

30/0.15 64.47 0.47 0.65 0.79 0.64 0.47 0.64 0.64 55.17 95.38 0.45 0.47 0.47 0.64 67.96 0.26 124.11 8 

30/0.20 65.53 0.48 0.65 0.80 0.65 0.48 0.65 0.66 53.85 94.20 0.44 0.48 0.49 0.66 71.30 0.27 131.13 6 

30/0.25 66.33 0.49 0.66 0.80 0.66 0.49 0.66 0.66 52.30 92.80 0.44 0.50 0.50 0.66 74.72 0.28 137.65 4 

30/0.30 64.97 0.47 0.65 0.79 0.65 0.47 0.65 0.65 54.30 95.02 0.45 0.48 0.48 0.65 69.85 0.26 128.06 7 

30/0.35 66.50 0.50 0.67 0.80 0.66 0.50 0.66 0.67 52.03 92.87 0.44 0.50 0.50 0.67 73.57 0.28 136.63 3 

30/0.40 66.64 0.50 0.67 0.81 0.67 0.50 0.67 0.67 51.48 92.09 0.43 0.50 0.50 0.67 75.69 0.29 140.08 2 

30/0.45 66.34 0.50 0.67 0.81 0.66 0.49 0.66 0.66 52.03 92.94 0.44 0.50 0.50 0.66 73.10 0.28 135.94 5 

30/0.50 66.83 0.50 0.68 0.81 0.67 0.50 0.67 0.67 51.14 91.97 0.43 0.50 0.51 0.67 74.14 0.28 138.77 1 
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h  

t  

a  

i  
ng method, the MAE, MSE, and RMSE, require minimization, while the

OR requires maximization. 

Given the winners and taking a look of their performance in

ables 6 and 8 , we can perceive that those configurations were ranked

s 2nd and 6th in the best classification analysis, and, as 2nd and 9th in
31 
he mean classification analysis provided in Tables 7 and 9 . On the other

and, the configurations that showed best performance in the classifica-

ion step ( Tables 6 and 8 ), are now ranked as 12th and 20th ( Tables 10

nd 11 ). When the ranking was done on the mean performance values

nstead of selecting the best for each configuration, the best configura-
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Table 8 

Best classification results for each configuration following the custom approach. 

Conf ACC KAPPA PRC ROC F COR PR RC RAE RRSE RMSE INF MAR MF LL MI PRS Ranking 

10/0.05 55.16 0.33 0.54 0.71 0.53 0.32 0.54 0.55 68.23 108.14 0.51 0.31 0.37 0.55 56.59 0.18 96.75 14 

10/0.10 46.99 0.24 0.53 0.68 0.45 0.25 0.54 0.47 77.09 109.25 0.54 0.27 0.29 0.47 32.67 0.12 58.12 27 

10/0.15 55.30 0.30 0.53 0.70 0.55 0.33 0.56 0.55 66.71 104.72 0.50 0.32 0.34 0.55 40.72 0.19 61.14 16 

10/0.20 51.46 0.22 0.51 0.67 0.49 0.23 0.50 0.51 73.99 110.49 0.52 0.24 0.28 0.51 19.38 0.09 29.71 28 

10/0.25 54.01 0.31 0.52 0.69 0.54 0.31 0.55 0.54 71.47 110.71 0.52 0.32 0.30 0.54 33.26 0.14 57.64 22 

10/0.30 63.14 0.44 0.62 0.78 0.64 0.47 0.68 0.63 58.84 95.76 0.46 0.47 0.45 0.63 52.12 0.22 93.10 1 

10/0.35 56.38 0.28 0.60 0.72 0.56 0.32 0.56 0.56 67.75 101.45 0.49 0.32 0.32 0.56 25.18 0.13 40.82 18 

10/0.40 50.19 0.24 0.48 0.64 0.50 0.24 0.51 0.50 80.58 116.81 0.55 0.23 0.27 0.50 26.72 0.10 45.47 30 

10/0.45 52.68 0.30 0.48 0.66 0.51 0.28 0.52 0.53 75.96 112.93 0.53 0.27 0.34 0.53 32.58 0.15 54.57 24 

10/0.50 52.68 0.29 0.49 0.67 0.50 0.28 0.50 0.53 73.16 112.33 0.53 0.27 0.34 0.53 29.21 0.13 49.54 25 

20/0.05 56.88 0.35 0.55 0.73 0.54 0.34 0.53 0.57 63.21 106.86 0.51 0.33 0.42 0.57 45.39 0.21 73.83 11 

20/0.10 56.07 0.34 0.55 0.72 0.52 0.33 0.53 0.56 69.25 106.40 0.50 0.33 0.42 0.56 48.09 0.20 77.33 12 

20/0.15 57.24 0.24 0.57 0.65 0.57 0.23 0.58 0.57 66.19 103.87 0.50 0.23 0.24 0.57 11.33 0.07 20.14 23 

20/0.20 57.14 0.32 0.55 0.70 0.57 0.33 0.57 0.57 67.37 104.82 0.50 0.34 0.34 0.57 29.84 0.15 47.90 15 

20/0.25 51.64 0.25 0.51 0.66 0.51 0.25 0.52 0.52 75.33 109.22 0.51 0.26 0.23 0.52 26.49 0.11 44.91 26 

20/0.30 55.56 0.28 0.58 0.70 0.56 0.30 0.57 0.56 66.80 101.72 0.48 0.30 0.29 0.56 12.89 0.08 20.42 21 

20/0.35 65.56 0.37 0.63 0.73 0.65 0.39 0.65 0.66 56.85 94.44 0.46 0.39 0.39 0.66 19.70 0.13 34.84 5 

20/0.40 51.03 0.24 0.45 0.61 0.51 0.23 0.51 0.51 78.26 115.49 0.55 0.24 0.22 0.51 39.74 0.10 68.30 29 

20/0.45 61.03 0.41 0.58 0.76 0.59 0.41 0.59 0.61 65.11 93.24 0.44 0.41 0.45 0.61 53.41 0.25 86.30 2 

20/0.50 54.87 0.33 0.51 0.67 0.55 0.33 0.56 0.55 77.03 103.46 0.49 0.34 0.35 0.55 35.22 0.16 60.30 20 

30/0.05 58.64 0.36 0.58 0.75 0.57 0.37 0.56 0.59 61.19 101.95 0.49 0.36 0.40 0.59 70.00 0.24 115.57 7 

30/0.10 54.15 0.32 0.53 0.68 0.55 0.34 0.59 0.54 72.85 109.31 0.52 0.35 0.30 0.54 68.93 0.23 115.65 13 

30/0.15 60.96 0.41 0.60 0.75 0.62 0.43 0.64 0.61 62.35 97.53 0.47 0.43 0.42 0.61 45.74 0.20 80.81 3 

30/0.20 58.48 0.38 0.53 0.69 0.57 0.37 0.58 0.58 67.72 105.90 0.50 0.37 0.41 0.58 47.47 0.21 77.22 10 

30/0.25 52.73 0.30 0.54 0.69 0.52 0.34 0.59 0.53 74.38 108.59 0.52 0.36 0.32 0.53 52.02 0.19 88.54 19 

30/0.30 56.07 0.33 0.52 0.68 0.56 0.33 0.56 0.56 70.54 105.38 0.50 0.32 0.33 0.56 43.67 0.16 79.52 17 

30/0.35 58.37 0.37 0.58 0.74 0.57 0.37 0.57 0.58 64.60 101.66 0.48 0.37 0.40 0.58 49.26 0.22 79.46 9 

30/0.40 62.73 0.36 0.59 0.74 0.60 0.43 0.65 0.63 58.09 100.81 0.48 0.48 0.42 0.63 27.00 0.25 40.09 4 

30/0.45 59.41 0.38 0.59 0.73 0.59 0.38 0.59 0.59 68.63 100.51 0.47 0.39 0.38 0.59 45.21 0.15 88.38 8 

30/0.50 60.48 0.40 0.59 0.74 0.60 0.41 0.60 0.60 68.74 95.42 0.45 0.41 0.41 0.60 37.36 0.18 67.44 6 

Table 9 

Mean classification results for each configuration following the custom approach. 

Conf ACC KAPPA PRC ROC F COR PR RC RAE RRSE RMSE INF MAR MF LL MI PRS Ranking 

10/0.05 44.32 0.14 0.45 0.60 0.43 0.14 0.46 0.44 83.80 117.68 0.56 0.14 0.16 0.44 14.64 0.06 24.40 16 

10/0.10 43.05 0.12 0.46 0.58 0.43 0.13 0.48 0.43 85.39 119.59 0.57 0.14 0.12 0.43 15.59 0.06 26.19 21 

10/0.15 44.02 0.13 0.45 0.59 0.43 0.13 0.46 0.44 84.55 119.00 0.57 0.14 0.14 0.44 14.43 0.06 23.65 19 

10/0.20 44.28 0.15 0.44 0.59 0.43 0.15 0.47 0.44 85.16 118.83 0.57 0.16 0.16 0.44 18.22 0.07 30.27 14 

10/0.25 45.89 0.15 0.47 0.60 0.45 0.15 0.48 0.46 81.93 116.21 0.55 0.16 0.15 0.46 14.88 0.06 24.46 12 

10/0.30 43.78 0.14 0.46 0.60 0.43 0.14 0.47 0.44 83.49 117.40 0.56 0.15 0.14 0.44 15.84 0.06 26.07 15 

10/0.35 44.07 0.13 0.46 0.59 0.43 0.14 0.46 0.44 84.54 117.58 0.56 0.13 0.14 0.44 11.94 0.05 18.98 18 

10/0.40 42.43 0.11 0.43 0.58 0.41 0.11 0.44 0.42 86.35 120.03 0.57 0.11 0.11 0.42 12.52 0.04 21.03 26 

10/0.45 44.51 0.13 0.46 0.59 0.43 0.13 0.45 0.45 83.31 116.29 0.55 0.13 0.15 0.45 10.94 0.05 17.06 17 

10/0.50 41.80 0.10 0.44 0.58 0.40 0.10 0.43 0.42 86.91 118.43 0.57 0.10 0.12 0.42 10.41 0.04 16.55 29 

20/0.05 42.80 0.13 0.45 0.59 0.42 0.13 0.46 0.43 85.39 118.85 0.57 0.13 0.15 0.43 16.57 0.06 28.14 20 

20/0.10 46.08 0.16 0.46 0.59 0.45 0.16 0.49 0.46 81.75 117.28 0.56 0.17 0.17 0.46 18.36 0.06 31.33 11 

20/0.15 41.65 0.10 0.44 0.57 0.41 0.11 0.45 0.42 87.05 121.09 0.58 0.12 0.11 0.42 11.59 0.05 18.65 28 

20/0.20 42.90 0.12 0.45 0.58 0.42 0.13 0.47 0.43 86.06 118.77 0.57 0.13 0.13 0.43 15.25 0.06 25.31 22 

20/0.25 41.97 0.09 0.44 0.57 0.41 0.10 0.45 0.42 86.71 120.46 0.58 0.10 0.10 0.42 11.93 0.05 19.48 30 

20/0.30 42.65 0.12 0.44 0.57 0.41 0.11 0.44 0.43 86.93 119.17 0.57 0.12 0.13 0.43 14.81 0.05 24.20 23 

20/0.35 41.61 0.10 0.44 0.57 0.40 0.10 0.44 0.42 87.53 120.54 0.58 0.10 0.11 0.42 14.66 0.06 23.60 27 

20/0.40 41.76 0.11 0.44 0.57 0.40 0.11 0.45 0.42 87.62 120.57 0.58 0.12 0.12 0.42 15.25 0.06 23.65 25 

20/0.45 44.69 0.13 0.47 0.60 0.44 0.14 0.47 0.45 83.58 116.39 0.56 0.15 0.14 0.45 15.72 0.07 24.58 13 

20/0.50 42.97 0.10 0.45 0.58 0.42 0.11 0.44 0.43 86.02 118.99 0.57 0.11 0.11 0.43 11.88 0.05 18.69 24 

30/0.05 47.96 0.19 0.49 0.62 0.47 0.19 0.50 0.48 78.77 115.69 0.55 0.20 0.21 0.48 23.61 0.09 40.29 5 

30/0.10 49.21 0.19 0.49 0.62 0.49 0.20 0.52 0.49 78.07 114.34 0.54 0.21 0.20 0.49 21.45 0.08 36.08 1 

30/0.15 47.88 0.20 0.49 0.63 0.47 0.21 0.52 0.48 78.95 114.58 0.55 0.22 0.21 0.48 21.63 0.09 37.32 2 

30/0.20 48.21 0.20 0.48 0.62 0.47 0.21 0.51 0.48 79.81 115.27 0.55 0.22 0.22 0.48 24.05 0.10 40.22 3 

30/0.25 46.82 0.18 0.48 0.62 0.46 0.18 0.49 0.47 80.50 115.71 0.55 0.19 0.19 0.47 24.06 0.09 40.49 7 

30/0.30 45.69 0.16 0.46 0.61 0.44 0.16 0.48 0.46 82.11 116.52 0.56 0.17 0.17 0.46 19.97 0.08 33.25 10 

30/0.35 47.53 0.16 0.48 0.60 0.46 0.17 0.50 0.48 79.27 114.75 0.55 0.18 0.16 0.48 19.43 0.08 32.22 8 

30/0.40 48.41 0.18 0.48 0.60 0.47 0.18 0.50 0.48 78.94 114.78 0.55 0.19 0.19 0.48 19.29 0.07 32.74 6 

30/0.45 48.31 0.18 0.47 0.62 0.47 0.19 0.49 0.48 79.17 114.26 0.54 0.19 0.19 0.48 25.97 0.10 43.66 4 

30/0.50 45.79 0.18 0.48 0.63 0.44 0.19 0.50 0.46 82.13 115.70 0.56 0.20 0.21 0.46 19.59 0.07 32.44 9 
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M  
ion for the classification ( Tables 7 and 9 ) are now ranked as 2nd and

th ( Tables 10 and 11 ), respectively. 

This leads to a conclusion that if we demand an indicator for devel-

ping good predicting models (regression step) by taking the best con-

guration from the mean values ranking, might be a good approach. 
32 
Fig. 2 shows the BP predictions for the best configurations, depicting

he BP in mmHg on the y-axis, and the particular instance on the x-axis.

lue lines are the actual BP values and the red lines are the predicted

P values. Black lines present the mean values of the SBP, DBP, and

AP, obtained from the training sets. Those lines are used as a reference
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Table 10 

Testing set results following the traditional approach. 

Conf SBP DBP MAE Ranking 

MAE MSE RMSE COR MAE MSE RMSE COR MAE MSE RMSE COR 

10/0.05 10.88 250.55 15.83 0.68 8.43 151.08 12.29 0.24 7.73 133.84 11.57 0.34 30 

10/0.10 10.31 212.43 14.58 0.71 7.82 138.20 11.76 0.34 7.27 120.64 10.98 0.39 29 

10/0.15 10.56 223.38 14.95 0.70 7.66 133.35 11.55 0.37 7.21 118.93 10.91 0.41 28 

10/0.20 10.37 229.38 15.15 0.70 7.53 120.54 10.98 0.45 7.03 111.73 10.57 0.45 25 

10/0.25 10.23 219.76 14.82 0.71 7.46 118.58 10.89 0.46 6.92 106.72 10.33 0.48 22 

10/0.30 9.52 192.45 13.87 0.74 7.58 120.04 10.96 0.47 6.95 103.45 10.17 0.50 15 

10/0.35 10.32 219.49 14.82 0.71 7.15 114.52 10.70 0.49 6.81 105.07 10.25 0.49 17 

10/0.40 10.33 222.90 14.93 0.70 7.61 129.55 11.38 0.41 7.18 117.85 10.86 0.41 27 

10/0.45 10.41 225.00 15.00 0.70 7.19 119.17 10.92 0.47 6.87 109.66 10.47 0.46 23 

10/0.50 9.56 204.58 14.30 0.72 7.53 129.81 11.39 0.42 6.93 114.05 10.68 0.44 24 

20/0.05 10.41 209.18 14.46 0.74 7.85 123.51 11.11 0.44 7.58 115.19 10.73 0.45 26 

20/0.10 9.39 181.81 13.48 0.76 7.86 130.69 11.43 0.41 7.30 107.93 10.39 0.48 19 

20/0.15 9.51 193.94 13.93 0.75 7.44 124.69 11.17 0.44 6.84 102.35 10.12 0.51 14 

20/0.20 9.37 181.94 13.49 0.77 7.69 126.99 11.27 0.42 7.05 104.47 10.22 0.50 16 

20/0.25 9.87 191.28 13.83 0.75 7.49 127.50 11.29 0.41 7.07 110.53 10.51 0.46 21 

20/0.30 9.44 170.15 13.04 0.78 7.38 117.57 10.84 0.48 6.90 98.22 9.91 0.53 9 

20/0.35 9.33 187.44 13.69 0.76 7.05 114.71 10.71 0.49 6.74 99.55 9.98 0.52 10 

20/0.40 9.67 178.49 13.36 0.77 7.17 116.80 10.81 0.49 6.91 100.11 10.01 0.53 11 

20/0.45 9.56 180.75 13.44 0.76 7.31 121.34 11.02 0.45 6.84 104.33 10.21 0.49 13 

20/0.50 9.53 181.52 13.47 0.78 6.96 115.83 10.76 0.49 6.57 99.61 9.98 0.53 8 

30/0.05 9.85 187.32 13.69 0.75 7.55 129.22 11.37 0.41 7.02 108.26 10.40 0.48 18 

30/0.10 10.31 201.68 14.20 0.74 7.14 124.47 11.16 0.46 6.84 111.77 10.57 0.49 20 

30/0.15 8.49 142.39 11.93 0.82 6.93 112.97 10.63 0.52 6.29 91.00 9.54 0.58 6 

30/0.20 8.66 152.72 12.36 0.80 6.60 103.80 10.19 0.56 6.09 88.64 9.41 0.58 4 

30/0.25 8.43 150.76 12.28 0.80 6.67 107.95 10.39 0.54 5.97 86.15 9.28 0.59 3 

30/0.30 8.90 168.70 12.99 0.78 6.49 101.65 10.08 0.57 5.94 88.21 9.39 0.58 5 

30/0.35 9.56 184.66 13.59 0.76 7.12 119.68 10.94 0.48 6.72 105.06 10.25 0.50 12 

30/0.40 8.61 156.25 12.50 0.80 6.15 95.62 9.78 0.60 5.77 82.75 9.10 0.61 1 

30/0.45 8.51 163.70 12.79 0.79 6.80 111.27 10.55 0.53 6.08 94.23 9.71 0.56 7 

30/0.50 8.54 168.42 12.98 0.78 6.28 99.43 9.97 0.58 5.85 87.19 9.34 0.59 2 

Table 11 

Testing set results following the custom approach. 

Conf SBP DBP MAE Ranking 

MAE MSE RMSE COR MAE MSE RMSE COR MAE MSE RMSE COR 

10/0.05 15.49 401.55 20.04 0.63 10.87 197.58 14.06 -0.22 11.37 208.01 14.42 0.15 15 

10/0.10 19.22 564.06 23.75 0.51 9.35 171.16 13.08 0.16 12.02 222.90 14.93 0.03 19 

10/0.15 15.73 400.63 20.02 0.63 10.72 184.99 13.60 -0.15 11.79 217.59 14.75 0.08 17 

10/0.20 17.01 507.84 22.54 0.56 9.82 167.25 12.93 0.00 11.70 212.95 14.59 0.20 13 

10/0.25 15.95 418.39 20.45 0.61 10.15 175.42 13.24 -0.04 11.43 204.27 14.29 0.13 9 

10/0.30 15.90 428.25 20.69 0.61 11.26 189.50 13.77 -0.13 12.30 223.57 14.95 0.08 20 

10/0.35 14.96 383.98 19.60 0.64 11.19 195.60 13.99 -0.15 11.81 214.62 14.65 0.14 16 

10/0.40 15.23 411.75 20.29 0.64 11.83 220.68 14.86 -0.31 12.43 238.22 15.43 0.10 27 

10/0.45 16.47 448.62 21.18 0.57 11.17 197.05 14.04 -0.10 12.60 236.76 15.39 0.03 26 

10/0.50 15.53 412.91 20.32 0.63 11.49 212.08 14.56 -0.21 12.28 231.66 15.22 0.07 23 

20/0.05 18.57 526.36 22.94 0.53 9.53 166.24 12.89 0.04 11.15 199.71 14.13 0.19 11 

20/0.10 20.44 639.12 25.28 0.46 8.79 148.61 12.19 0.17 11.30 199.46 14.12 0.23 12 

20/0.15 17.88 487.77 22.09 0.59 11.57 216.64 14.72 -0.17 12.31 231.04 15.20 0.08 28 

20/0.20 18.11 514.65 22.69 0.54 9.39 157.87 12.56 0.14 10.98 198.92 14.10 0.17 5 

20/0.25 18.71 546.87 23.39 0.52 8.96 159.18 12.62 0.10 10.97 200.21 14.15 0.15 8 

20/0.30 16.17 412.49 20.31 0.62 12.04 223.79 14.96 -0.27 12.02 222.56 14.92 0.08 25 

20/0.35 17.00 436.39 20.89 0.64 9.94 178.64 13.37 0.02 10.87 196.44 14.02 0.20 4 

20/0.40 15.64 361.26 19.01 0.70 10.57 190.56 13.80 -0.14 10.19 187.34 13.69 0.18 3 

20/0.45 16.29 413.83 20.34 0.67 10.25 173.99 13.19 -0.06 10.42 186.67 13.66 0.22 2 

20/0.50 19.31 531.20 23.05 0.50 9.50 158.78 12.60 0.10 11.40 201.99 14.21 0.01 14 

30/0.05 21.49 649.85 25.49 0.40 9.89 175.00 13.23 0.16 12.54 233.38 15.28 0.04 29 

30/0.10 22.02 685.54 26.18 0.31 7.86 124.11 11.14 0.32 11.30 187.46 13.69 0.19 6 

30/0.15 19.43 556.33 23.59 0.46 10.37 176.74 13.29 -0.03 11.58 215.40 14.68 0.02 22 

30/0.20 21.60 650.16 25.50 0.49 9.21 167.23 12.93 0.05 12.31 224.92 15.00 0.13 24 

30/0.25 19.42 525.79 22.93 0.51 11.21 197.13 14.04 0.01 12.09 233.00 15.26 -0.10 30 

30/0.30 15.68 415.29 20.38 0.65 10.86 183.53 13.55 -0.11 11.34 203.42 14.26 0.22 10 

30/0.35 21.30 663.79 25.76 0.44 8.93 148.61 12.19 0.25 12.19 218.75 14.79 0.12 18 

30/0.40 16.72 438.41 20.94 0.60 10.09 170.14 13.04 0.10 11.22 202.91 14.24 0.09 7 

30/0.45 17.20 450.34 21.22 0.57 11.57 207.80 14.42 -0.09 11.73 209.57 14.48 0.03 21 

30/0.50 17.39 462.46 21.50 0.59 9.23 145.64 12.07 0.19 10.54 181.21 13.46 0.19 1 

33 
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Fig. 2. Best predictions in traditional (left) and custom 

(right) approach. 
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or the success of our developed predictors, showing that they perform

etter than simple predictors that would always predict the mean val-

es. From the figure it can be perceived that the prediction line clearly

ollows the actual line in the traditional approach, whereas in the cus-

om approach the prediction line cannot catch all the trends in the BP

hanges. We believe that this phenomena is due to the fact that in the

ustom case, no instances from a single patient are involved in the train-

ng, validation and the testing phase. Thus, there are some training sets

hat miss hypertensive patients to learn from, and therefore, the testing

esults are not reliable. 

.5. Level 5: Information fusion using the information from multi-target 

egression models from all configurations 

At the end, we performed an information fusion to merge the infor-

ation obtained from the multi-target regression models from all con-

gurations. Because the training set, which is used for training multi-

arget regression model for each configuration, was selected using the

lassifiers ranking, this ranking was used as the influence of each config-

ration multi-target regression model to the end prediction of the SBP,

BP, and MAE. Therefore, as soon as the regression models are created

rom the best training sets in the classification analysis, the produced

alues are multiplied by their final ranking. Those rankings are scaled

n a way that all the ranks sum is one. As they are multiplied by the

orresponding prediction, all the predictions are summed into a single

rediction for each SBP, DBP, and MAP. 

The procedure is performed considering both, the best classification

ankings from each configuration ( Tables 6 and 8 ) and the mean re-

ults rankings of each configuration ( Tables 7 and 9 ), for both splitting

pproaches. Table 12 presents the evaluation of the end results, where

Best ” are the best results for the traditional (T) and custom (C) ap-

roach, according to the ranking in Tables 10 and 11 ; “Fused 1 ” is the

ase where we used the rankings from the best classifiers, and “Fused

 ” is the case where we used the rankings from the mean performance

esults. All results in this table are presented in mmHg. Considering the
34 
able, in both cases we can conclude that the prediction fusion led to bet-

er prediction. The SBP prediction is significantly improved and there

re minor improvements in the MAP prediction. For the DBP prediction,

he results are almost the same. These results, encouraged us to follow

he proposed multi-level information fusion methodology. The predic-

ions for the “Fused 1 ” and “Fused 2 ” cases are shown in Figs. 3 and 4 ,

orrespondingly. 

Comparing the left and the right part of Figs. 2–4 , we can see greater

issimilarity between blue and orange lines in the right part. This hap-

ens since the lines on the left side are for the traditional split, where

ll measurements were assumed as independent, so part of the measure-

ents from the same subject are in the training set and the rest in the

est set. However, following the studies that involve humans subjects,

e also performed a custom split, where measurements from one sub-

ect occurs only in one set (training or test set). This is the reason why

reater dissimilarities are detected on the right parts of these figures. 

. Discussion 

Fig. 5 depicts the influence of the prediction errors on the BP class.

n both approaches (traditional and custom), we inspected whether the

rror caused by the multi-target regression leads to a change of the ac-

ual BP class, as medically determined according to the Table 4 , or to a

hange of the joined class (as presented in Table 4 ). 

From the Fig. 5 , it can be concluded that configuration number 26,

hich refers to 30 s long signals and cut-off frequency of 0.30 Hz, can be

onsidered as best trade-off between the first and the second approach

traditional and custom) with least changes given in percentage. 

Fig. 6 provides an insight into the severity of the misses - meaning we

onsider the BP class miss to be a severe one if the difference between

he actual and the predicted class is more than one class. Adding the

everity analysis to the class changes, we can see that most promising

onfigurations are the 3rd and the 26th. Comparing to the total number

f misses in the Fig. 5 , where we selected 26th configuration to be the

est, according to the severity analysis, we can expect that 4% included
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Fig. 3. Fused predictions in traditional (left) and cus- 

tom (right) approach by using best classifiers rankings. 

Fig. 4. Fused predictions in traditional (left) and cus- 

tom (right) approach by using mean classifications 

rankings. 

35 
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Table 12 

Regression results from the fusion-prediction procedure. 

T Best Fused 1 Fused 2 C Best Fused 1 Fused 2 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

SBP 8.61 12.50 7.94 11.40 7.93 11.36 SBP 17.39 21.50 16.40 19.69 16.60 19.92 

DBP 6.15 9.78 6.43 9.88 6.41 9.85 DBP 9.23 12.07 9.26 12.15 9.24 12.11 

MAP 5.77 9.10 5.73 8.82 5.72 8.79 MAP 10.54 13.46 9.76 12.92 9.80 12.98 

Fig. 5. Percentage of misses in classes caused by prediction error. 

Fig. 6. Percentage of severe misses in classes caused by prediction error. 
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n all misses (27%) in the traditional approach, and 13% included in all

isses (47%) in the custom approach, to be severe. 

Going back to the tables showing the regressions ( Tables 10 and 11 )

t can be observed that the 26th configuration has been ranked as 5th

nd 10th. Since we cannot make a conclusion whether this configura-

ion might be the best, we decided to include the percentage of class

isses and the percentage of severe class misses in the pool with the

ther performance metrics. Therefore, we repeated the ranking analy-

is, however, no significant changes were detected for the best and the

orst configuration performances. That means that there was no signif-
36 
cant difference between the new metrics that would beat the influence

f the other metrics. 

Furthermore, we inspected the severe misses distributions by classes,

n both real and joined class cases. As it can be perceived in Fig. 7 , class

 (S2HTN) is most problematic in both traditional and custom approach.

his phenomena is due to the fact that most of the hypertension repre-

entatives are patients with brain injuries that suffer isolated systolic hy-

ertension characterized with high SBP and low DBP (given in Table 3 ).

his is also reflected in the joined classes case since class 4 is joined with

he rest of the hypertension classes into a single class labeled as class 2.
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Fig. 7. Percentage of severe misses by class. 

Table 13 

State-of-the-art literature results published in 2018. 

Ref. Source Features Methods SBP (mmHg) DBP (mmHg) 

[101] ECG + PPG Morphological Deep RNN [3.84–5.81] RMSE [1.80–5.21] RMSE 

[102] FBG sensor Morphological PLSR, ANN Unknown: 12 ± 17 MAE ± SD 

[103] Utrasound images Levenberg-Marquardt Regression, Bland-Altman 10.21 MAE 8.23 MAE 

[104] PPG Morphological, time-frequency DT,SVR, ABR,RFR [4.17–7.51] SD [8.90–18.54] SD 

[105] ECG + PPG Waveform, artificial and personal DNN 3.63 MAE 2.45 MAE 

[106] rPPG PTT estimation Gaussian model 8.42 ± 8.81 MAE ± SD 12.34 ± 7.10 MAE ± SD 
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he same results are also confirmed to be valid for the prediction-fusion

pproach. 

In our previous work [32] , the best results obtained for SBP, DBP,

nd MAP are 8.64, 18.20, and 13.52 MAE in mmHg without calibration,

nd 7.72, 9.45, and 8.13 MAE in mmHg with calibration. 

In the multi-level information fusion methodology design as pre-

ented in this paper, we we have achieved 7.93 ± 8.16, 6.41 ± 7.5, and

.72 ± 6.69 ( MAE ± SD in mmHg), for SBP, DBP, and MAP when we have

atient’s data available for training (the traditional approach). In the

ase of completely unknown patient’s data (the custom approach), the

 MAE ± SD in mmHg) achieved for SBP, DBP, and MAP is 16.60 ± 11.05,

.24 ± 7.85, and 9.80 ± 8.53. The presented results are with no cali-

ration method applied . 

Table 13 , provides insight into the state-of-the-art literature pub-

ished in 2018. According to the information provided, all of the method-

logies rely either on a combination of multiple physiological signals, or

ompletely new techniques involving ultrasound images and RGB cam-

ras. None of the reported relies on ECG signal only. 

To provide results that are more acceptable for medical purposes,

he goal is to achieve an error as close as possible to that of a certified

edical device for BP estimation (5 mmHg, and SD within 8 mmHg ac-

ording to BHS and AAMI standards [107] . Our results are appropriately

ompared with latest literature [108] and confirm the relation between

he ECG signal and the blood pressure. However, there is still an effort

t  

37 
hat should be done to make these models more close to be acceptable

or medical purposes. 

. Conclusion 

In this paper, we propose a multi-level information fusion method-

logy for learning a blood pressure predictive model using ECG sensor

ata. The methodology estimates systolic blood pressure, diastolic blood

ressure, and the mean arterial pressure from ECG sensor data. We eval-

ate models (i.e. configurations) when the ECG signals were processed

sing different signal lengths, 10 s, 20 s, and 30 s, filtered with differ-

nt cut-off frequencies starting from 0.05 Hz, up to 0.50 Hz, with the

tep of 0.05 Hz. Using them, we identify that the models trained for a

ignal length of 30 s with a variable cut-off frequency of 0.40 Hz and

.50 Hz to be most informative. The novelty of the methodology is in

using the models built for different configurations, which improves the

esults obtained by the best configuration only. In this study, a design

elationship between BP and ECG is presented in the form of fused ML

odels. Since the trend of ECG sensor usage indicates a continuous in-

rease in demand, we believe that our proposed solution has promising

eal-world applications in civilian and military environments. 

For our future work, we will focus on a comparison analysis to show

he impact of different physical activities to the blood pressure measure-
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ent, since intuitively, results with sitting subjects would be higher due

o the lack of motion artifacts in the collected signals. 
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