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Abstract: The use of smartphones, coupled with different sensors, makes it an attractive solution for 

measuring different physical and physiological features, allowing for the monitoring of various 

parameters and even identifying some diseases. The BITalino device allows the use of different 

sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study 

different health parameters. With these devices, the acquisition of signals is straightforward, and it 

is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to 

measure parameters such as calculating the QRS complex and its variation with ECG data to control 

the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s 

brain activity and frequency. The purpose of this paper is to present a method for recognition of the 

diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and 

sensors connected to a BITalino device. The data were collected during the elderly’s experiences, 

performing the Timed-Up and Go test, and the different diseases found in the sample in the study. 

The data were analyzed, and the following features were extracted from the ECG, including heart 

rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average 

R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated 

with different parameters, proving that there are relations between the individuals and the different 

health conditions. 

Keywords: diseases; electrocardiography; electroencephalography; timed-up and go test; sensors; 

mobile devices; feature detection; diseases; older adults 
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1. Introduction 

1.1. Background 

Currently, the world’s population is increasingly aging, promoting research in several medical 

areas [1]. Due to the increase in life expectancy, the research studies focused on the elderly population 

are essential to improve the quality of life of the elderly. There are 157 elderly persons per hundred 

young people, so we can verify that the number of older adults is around 64% higher than young 

people [2–5]. Commonly, older adults have different types of pathologies. The automatic 

identification of these diseases based on the data acquired during the Timed-Up and Go test may 

allow different preliminary treatments [5–7]. The future generation of older adults will use mobile 

devices intensively [8,9], allowing the possibility of recognizing different types of diseases with these 

devices [10–15]. The evolution and high proliferation of the technological equipment with varying 

kinds of sensors allow the growth of the development of novel medical solutions [16], promoting the 

elderly to independent living with remote medical control [17]. 

Several sensors are embedded in mobile devices, but other sensors may be used in conjunction 

with the internal sensors to provide different measurements related to various physical and 

physiological parameters [18,19]. Regarding the analysis of different variables of the Timed-Up and 

Go test, the accelerometer and magnetometer sensors embedded on mobile devices may be used in 

conjunction with external sensors to perform complementary measurements [20–22]. 

Previous works show that the accelerometer and magnetometer sensors may support the 

analysis of the individuals’ functionality, including the gait [23,24]. However, one of the significant 

problems in this type of study consists in the synchronization of the acquisition of the different types 

of data from the sensors embedded on mobile devices, and the other sensors connected by over-the-

air connection, including Electrocardiography (ECG) and Electroencephalography sensors (EEG) 

[25–29]. In addition to this challenge, data processing may include the fusion of the data acquired 

from different sources. 

One of the most common tests for the assessment of the performance of the lower limbs is the 

Timed-Up and Go test, where the analysis of the data acquired from different sources allows the 

recognition of several healthcare problems, including balance, mobility, fall risk, Parkinson’s disease, 

amyotrophic lateral sclerosis, and other orthopedic, cardiovascular and brain pathologies [30–35]. 

The use of ECG and EEG sensors in conjunction with Timed-Up and Go tests allows cardiac 

problems and other problems associated with the nervous system to be monitored for the first 

analysis of emergency [25–29]. One of the low-cost solutions that may be used in conjunction with 

mobile devices is the BITalino device and its sensors [36]. The BITalino device is an example of 

biomedical equipment that is scalable and versatile, used for the acquisition of different biosignals 

transmitted by Bluetooth. The ECG sensors detect the duration and variation in size of the ECG waves 

used for the abnormalities of heart rate. Furthermore, the EEG sensor is used for the capture of the 

brain activity and it is positioned in a bipolar configuration with two measurement electrodes for the 

detection of electrical potentials. Combining smartphones with these devices and sensors may allow 

for the acquisition of cardiac signals, realizing the relationship of these signals with diseases 

associated with the heart, and the recognition of different healthcare problems. 

In this work, we build upon previous studies [37,38] related to the acquisition of data from the 

accelerometer and magnetometer sensors available on the off-the-shelf mobile devices, pressure 

sensors available in the back of the chair, and ECG and EEG sensors, for the detection of different 

types of movement, and cardiac and brain problems. This paper aims to design and develop a method 

for the acquisition, analysis, and identification of different patterns of diseases with low-cost sensors. 

To facilitate this, the proposed solution uses embedded smartphone sensors and additional ones 

connected to a BITalino device [36] to identify patterns in measured ECG and EEG signals during 

Timed-Up and Go test and find their relation to existing illnesses of patients. We show that such 

correlation exists and that it can be used to identify emerging medical conditions, so they can be 

treated from early on. 
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1.2. Motivation 

This research is supported by the ability to accurately identify various parameters during the 

Timed-Up and Go test [39]. However, the use of mobile devices to help the capture of the various 

sensors poses several additional restrictions associated with the memory, power processing, among 

others [40,41]. The data captured during the Timed-Up and Go test are essential for further 

measurements, where we intend to create a large dataset from different sensors used for additional 

measures of various diagnostics in medicine. 

Different diseases may be recognized by the use of the Timed-Up and Go test [42], allowing 

healthcare professionals to assess different healthcare conditions of older adults. This 

implementation may be first aid or preliminary detection of various diseases in an initial state [43]. 

As it is an easy test, it may be performed with people with neurological disorders [44], allowing the 

pattern recognition of different diseases. Several parameters may be measured for the detection of 

cardiac diseases, including the heart rate, linear heart rate variability, the amplitude of complex QRS, 

and amplitudes of R-R and R-S intervals, for the detection of different diseases. 

1.3. Prior Work 

The ECG and EEG signals have been used in the past for the recognition of different diseases. 

The authors of [45] filtered the acquired ECG data and applied a differential transfer function to the 

signal. The authors of [45] also squared the ECG signal to obtain information about the waveform 

and to calculate the heart rate. According to the authors of [45], a heart rate below 60 bpm is related 

to the presence of a bradycardia disease. A tachycardia is identified with a heart rate higher than 100 

bpm. In continuation, the premature ventricular contraction is recognized for an amplitude of the 

QRS complex higher than 120ms [45]. Bradycardia and tachycardia diseases are not identified, but 

the heart rate is not between 60 and 100 bpm, the premature atrial contraction may be recognized 

[45]. 

The detection of different diseases, including normal sinus rhythm, premature atrial beat, atrial 

fibrillation, supraventricular tachyarrhythmia, pre-excitation, premature ventricular contraction, 

ventricular bulge, ventricular triplet, ventricular tachycardia, idioventricular rhythm, fusion 

ventricular block beat of the left branch, block beat of the right branch, were recognized with neural 

networks with features related to the normalization, maximum pooling, flattening, density, among 

others, related to several sliding windows [46]. The measurement of the P-R interval and the 

amplitude of QRS were also used for the recognition of cardiovascular death [47]. 

In [48], the authors recognized primary and secondary pulmonary hypertension with the 

amplitude of the P wave in the II derivation, the frontal mid axis of the QRS complex, duration of the 

QRS complex, deviations of the R and S waves in leads I and V6 and the T wave configurations in the 

precordial leads, where the best correlation was obtained with the value of the frontal mid-axis of the 

QRS complex. 

The authors of [49] developed a method to detect atrial fibrillation based on the absence of P 

wave, irregular heart rate, and other variables related to the atrial activity. The implementation of the 

Pan Tompkins algorithm was used to detect arrhythmias with features related to frequency and time 

domains [50]. The detection of the coronary artery disease was recognized by the amplitude of QRS 

interval, and depressions S-T and T wave [51]. 

With the use of neural networks, the authors of [52,53] also detected various cardiac diseases, 

including left bundle branch block, right bundle branch block, premature ventricular contraction, 

Wolff–Parkinson–White syndrome, myocardial ischemia, and myocardial injury, with the duration 

of P, S, T and QRS, P-R and Q-T intervals, P, R and T amplitudes, and S-T segment. 

Parkinson’s disease may be detected with different features, including R-R, P-R, QRS, and Q-T 

intervals, and the heart rate measured and corrected by Q-T interval, analyzing the Spearman 

correlation coefficient [54]. Based on different features, including heart rate, P, T and QRS intervals, 

P durations, and P-R, QRS, Q-T and corrected Q-T intervals, ventricular activation time, and frontal 

plane axis, the authors of [55] recognized left and right ventricular hypertrophies. 
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Related to the EEG signal, the authors of [56] implemented machine learning methods for the 

recognition of various diseases, including Alzheimer’s disease, with different statistical, amplitude, 

and frequency-based features. On the other hand, the authors of [57] implemented machine learning 

methods with time–domain features. Epilepsy is detected by various studies with machine learning 

methods, including Support Vector Machine (SVM), adaptive neuro-fuzzy inference system, and 

linear classifier, based on different features based on wavelet coefficients, including 2nd order 

cumulants (mean ± standard deviation), asymmetry, kurtosis, spectral, Renvi, Kolmogorov–Sinai, 

variance, energy, and the maximum and minimum values of the power spectral density [58–61]. 

Based on signal strength, window strength, and sample entropy, Alzheimer’s disease is correctly 

recognized with linear discriminant analysis [62]. Finally, acute ischemic stroke is detected by the 

densities of the power spectrum acquired by different devices [63]. As presented in Table 1, the 

diseases recognized by the ECG and EEG sensors are distributed by the number of the studies 

analyzed. 

Table 1. Studies vs. Diseases. 

Diseases Studies 
Number of 

Studies 

ECG 

Arrhythmia (i.e., atrial fibrillation, supraventricular tachyarrhythmia, pre-

excitation, ventricular tachycardia, idioventricular rhythm, left and right 

branch block, and Wolff–Parkinson–White syndrome) 

[46,49,50,53] 4 

Premature ventricular contraction [45,46,53] 3 

Primary and secondary pulmonary hypertension; coronary artery disease; 

myocardial ischemia; myocardial injury; Parkinson’s disease; left and right 

ventricular hypertrophies 

[48,51,53–

55] 
1 

EEG 

Epilepsy [58–61] 4 

Alzheimer’s disease [56,62] 2 

Brain abnormalities; acute ischemic stroke. [63] 1 

1.4. Purpose of the Study 

The hypothesis of this research is that Android smartphones complemented by affordable 

external ECG and EEG sensors can provide a reliable method for the identification of different 

diseases. In particular, the paper aims to identify the different waves from the ECG and EEG sensors, 

calculate various metrics based on them, and verify that each disease has distinct features that can 

facilitate its identification. 

The presentation of a method for recognizing the diseases related to ECG and EEG data with 

sensors, available in off-the-shelf mobile devices, and sensors connected to a BITalino device during 

the performance of the Timed-Up and Go test is the main contribution of this paper. This document 

presents the measurement of different features to create a reliable dataset for the recognition of the 

various diseases present in the sample in analysis. Additionally, this paper presents a state-of-the-art 

review of the methods used in the literature to identify illnesses related to ECG and EEG signals. The 

use of mobile devices proves its usability in these types of studies. 

The data were previously acquired from people aged between 60 and 97 years old with several 

diseases. Clinicians already identified the disorders of each participant for the success of this study 

related to automatic identification, including arterial hypertension, depression, cardiac arrhythmia, 

coronary artery disease, and Parkinson’s disease. These diseases are only recognized with ECG 

sensors, where the EEG sensor is only used to detect possible abnormalities. The data acquisition was 

performed by institutionalized people in the Centre region of Portugal, explicitly in the municipalities 

of Fundão and Covilhã. 

The data acquisition was performed during the performance of the Timed-Up and Go test with 

Android devices. The accelerometer and magnetometer data from the embedded sensors feature on 

the mobile device, pressure sensor data are placed on the back of the chair, and the EEG and ECG 
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sensors are connected to the individual for the data acquisition. The mobile application simultaneous 

acquire the data from the different sensors, where, after data acquisition, the various text files were 

uploaded to the Cloud by using the FireBase service. 

Commonly, ECG and EEG data are captured while the subject is stationary. Contrary to that, 

The Timed-Up and Go test involves movement. Be that as it may, there are approaches such as [63] 

which show that, even in cases when the subject is moving, recognition of different diseases related 

to ECG and EEG data [64] is still possible. This would be convenient for the users to perform these 

measurements while having light movement during other tests. Moreover, there also be some 

advantages to this approach because it can emphasize some emerging medical conditions that may 

become more apparent during movement. This subject is related to Internal Medicine, and the 

recognition of different diseases in an early stage is excellent for the treatment of different diseases 

[65,66]. 

After the data acquisition, the ECG and EEG data were processed, and the different features 

were extracted. The features extracted from the ECG sensors were the heart rate, the linear heart rate 

variability, the average QRS interval, the average R-R interval, and the average R-S interval. Next, 

the features extracted from the EEG sensor were frequency and variability. 

The different features were correlated with the institutions, and the diseases present in the 

sample. Initially, the correlation between the values extracted from the sample and the diseases 

identified by the healthcare professionals was performed, verifying that they are commonly 

determined by different parameters, except the coronary artery disease and bilateral gonarthrosis. 

Applying different statistical tests, we also proved different correlations between diseases, and 

parameters extracted, as presented in Section 4.1. 

1.5. Structure of the Study 

The remaining sections of this paper are organized as follows: Section 2 presents the methods 

used for the analysis of the data acquired from ECG and EEG sensors during the performance of the 

Timed-Up and Go test by older adults. The study design and participants’ description of the Timed-

Up and Go test, the data processing and acquisition processing, and the statistical analysis are 

presented in Section 3. In continuation, Section 4 discusses the main findings and limitations of the 

study. The comparison with prior work is also shown in Section 4. Finally, the conclusions of this 

study are presented in Section 5. 

2. Methods 

2.1. Study Design and Participants 

For the acquisition of data related to the Timed-Up and Go test, this study is designed to use one 

mobile device with accelerometer and magnetometer sensors, and two BITalino devices with 

pressure, ECG, and EEG sensors. The mobile device is used for data acquisition and to send the 

collected data to the server. Several environments may be recognized, but our focus is related to 

healthcare. This study is a trial to check if, during the performance of the test, we can identify different 

types of diseases. 

This study’s target is related to the population with cardiac and brain problems institutionalized 

in retirement homes and aged between 60 and 90 years. The sample for the analysis was selected in 

collaboration with the people responsible in the retirement homes. The requirement is related to the 

possibility of having mobility capabilities to perform the test. The volunteers were informed of all the 

rules to complete the test and the instrumentation. They signed the ethical agreement to publish the 

results of the experiments in an anonymous form. 

The tests were performed with a XIAOMI MI6 with the Android operating system, but the 

different environment variables vary between the various institutions, which influences the data 

acquisition. The different individuals performed the test between October and December 2019 several 

times. Initially, the test was performed by 40 older adults, however, due to the over-the-air connection 

constraints, the ECG and EEG signals were only reliable acquired from 14 individuals with mean age 
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83.1 and a standard deviation of 7.4. The various healthcare diseases were presented in Table 2. The 

different volunteers have different types of diseases, including multiple sclerosis, diseases related to 

the heart, such as arrhythmia, or illnesses associated with mental health, such as Parkinson’s disease. 

Of the participants, 50% had a chair with supports and also 50% of them had good mobile network 

coverage. Only 14% of the patients were monitored by a physical therapist. The physical condition of 

14% was good, 43% were narrow and tight, and 43% had a slope. Thus, the acquired data are 

heterogeneous. Parkinson’s disease is commonly classified as an illness related to mental health, but 

the derivations of ECG sensors frequently detect it. 

The sample selected has different cardiac and brain problems that result in the creation of a 

dataset with varying types of data that will be processed, as presented in Section 2.2. The essential 

diseases analyzed were arterial hypertension, depression, cardiac arrhythmia, coronary artery 

disease, and Parkinson’s disease. The mobile application acquired the data from different sensors 

with different delays. The accelerometer and magnetometer sensors receive the data every 1 ms, and 

the pressure, ECG, and EEG sensors acquire the data every 10 ms. The EEG and ECG values taken 

into account in this study are related to the alpha channel of the sensor. The electrodes of the EEG 

sensors were placed in the electrically neutral location (left) and measurement electrodes (right), and 

another electrode in a region of low muscular activity as reference. The two electrodes of ECG sensor 

were placed at the wrist of the individual. The ECG and EEG sensors connected to the BITalino device 

has only one channel for the acquisition of the data [36]. The data acquisition process starts with an 

acoustic signal, which signals the start of the data acquisition. 

Table 2. Description of the population of the study and test conditions. 

Person 

ID 
Diseases 

Age 

(Years 

Old) 

Test Conditions 

Chair 

with 

Supports 

Good 

Mobile 

Network 

Coverage 

Physical 

Conditions 

Monitored by 

Physical 

Therapist 

1 Arterial hypertension; Arthrosis 85 No Yes Good Yes 

2 

Arterial hypertension; Cardiac 

arrhythmia; Arteriosclerotic 

coronary disease; Heart failure 
84 Yes No Good Yes 

3 
Right leg amputation; Umbilical 

hernia; Arterial hypertension 
88 Yes No With Slope No 

4 
Prostate Cancer; Parkinson’s disease; 

Post-traumatic stress 
76 Yes No With Slope No 

5 
Arterial hypertension; Diabetes 

mellitus Type II  
86 Yes No With Slope No 

6 

Heart failure; Diabetes mellitus Type 

II; Arterial hypertension; 

Depression; Sequelae of surgery to 

brain injury 

83 Yes No With Slope No 

7 

Heart failure; Diabetes mellitus Type 

II; Vertigo syndrome; Chronic 

headaches; Osteoarthritis; Prosthesis 

in the right humeral; Osteoporosis; 

Arterial hypertension 

81 Yes No With Slope No 

8 

Osteoarthritis; Depression; Heart 

failure; Arterial hypertension; 

Osteoporosis 

89 Yes No With Slope No 

9 

Dementia of vascular etiology; 

Prostate Cancer; Arterial 

hypertension; Vertigo syndrome 

N/D No Yes 
Narrow and 

tight 
No 

10 

Diabetes mellitus Type II; Arterial 

hypertension; Heart failure; 

Hyperuricemia; Depression; 

Bilateral gonarthrosis 

N/D No Yes 
Narrow and 

tight 
No 
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11 

Heart failure; Chronic obstructive 

pulmonary disease; Bilateral 

gonarthrosis 

97 No Yes 
Narrow and 

tight 
No 

12 
Diabetes mellitus Type II; Arterial 

hypertension 
71 No Yes 

Narrow and 

tight 
No 

13 Arterial hypertension 74 No Yes 
Narrow and 

tight 
No 

14 

Arterial hypertension; Pulmonary 

fibrosis; Hyperuricemia; Anemia; 

Chronic kidney disease; Cardiac 

arrhythmia; Acute myocardial 

infarction; Hypocoagulated 

N/D No Yes 
Narrow and 

tight 
No 

N/D: The values were not reported. 

2.2. Description of the Timed-Up and Go Test and Data Acquisition and Processing 

In 1991, the Timed-Up and Go was created to help the healthcare professionals for the 

measurement of the risk of falls [60]. The Timed-Up and Go test is composed of various phases: sitting 

on the chair, lifting from the chair, walking for three meters, reversing the direction of walking, 

walking another three meters towards the chair, and sitting on the chair. 

During the test’s performance, some technical issues influence the acquisition of signals by the 

BITalino device, such as the failure of the sensors data acquisition, the Bluetooth connection is lost, 

among others. This makes it more complicated to perform realistic studies on the field with actual 

patients, therefore the number of valid data points was reduced. The acquisition of different types of 

data was performed with a mobile device and two BITalino devices. The sensors used for the 

measurement of the results of the test and other complementary sensors may be used for the analysis 

of different parameters of healthcare diseases. 

2.3. Statistical Analysis 

After the acquisition of the data from the sensors, available in off-the-shelf mobile devices, and 

the sensors connected to the BITalino device, the data analysis was performed. The main goal is to 

analyze the data acquired from the ECG and EEG sensors during the performance of the Timed-Up 

and Go test for helping in recognition of the diseases associated with these sensors. Firstly, the ECG 

data were processed for the extraction of heart rate, linear heart rate variability, the average of QRS 

interval, the average of R-R interval, and the average of R-S interval. Finally, the EEG sensor as 

processed for the extraction of its frequency and variability. 

After measuring the different variables, descriptive statistics, normality tests, and detection of 

outliers were performed. In addition, a statistical comparison between them was performed, 

analyzing and comparing the results by the averages of each institution, person, age, and healthcare 

diseases. 

3. Results 

3.1. Data Acquisition 

The data were acquired by a mobile application installed in an Android device. It was developed 

with Android Studio. As presented in Figure 1, the mobile application is composed of components 

for data acquisition, storage, and send it to a FireBase server. The mobile application acquired data 

from the onboard sensors, i.e., accelerometer and magnetometer, and two BITalino devices connected 

by Bluetooth. The BITalino devices receive different sensors’ data at a sampling rate of 10 kHz and 

16 bits of precision. The data acquired by onboard sensors are collected with a sampling rate of 1 kHz 

and 16 bits of precision. Firstly, the ECG sensor was attached to the user in three positions with 

electrodes on the arm. Finally, the EEG sensor was positioned on the head with two electrodes. This 

position of the sensors was discussed with healthcare professionals related to medicine and 

physiotherapy subjects. 
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On the one hand, this mobile application performed a continuous data collection using the built-

in magnetometer and accelerometer sensors. The data were collected with a sampling rate of 1 kHz 

and 16 bits of precision. On the other hand, the mobile application handled the communication 

technologies required to receive data through Bluetooth from the BITalino device with a pressure 

sensor. Still, it was also responsible for sending the collected data to the FireBase service for storage. 

 

Figure 1. Mobile application. 

3.2. Requirements 

The requirements for performing the experiments were related to the environment and the 

individual. The individual must have the mobility to complete the test. For the performance of the 

Timed-Up and Go test, the material and equipment needed consists of a chair, a tape measure to 

identify the distance to walk, adhesive tape to mark the end of the three meters, where the individual 

should reverse the gait, two sports belts, where one is for the mobile device and another one for the 

BITalino device to measure ECG and EEG data, two BITalino devices and one mobile device. The 

ECG and EEG sensors consisted of the use of electrodes placed in the individual before the test (i.e., 

three electrodes for ECG sensor, and two electrodes for EEG sensors). 

3.3. Validation 

The data acquired from the ECG and EEG sensors allowed us to measure different parameters 

found in the literature, namely: 

• ECG sensor: Heart Rate; Linear Heart Rate Variability; Average of QRS interval; Average of R-

R interval; Average of R-S interval. 

• EEG sensor: Frequency; Variability. 



Computers 2020, 9, 67 9 of 22 

 

In the subsequent sections, the results of the comparison between age and the different variables 

measured (Section 3.3.1), finalizing this section with the descriptive statistics of the experiments by 

diseases (Section 3.3.2). 

3.3.1. Results by Age 

The average age of this group of individuals is 83 years old, varying between a minimum of 71 

and a maximum of 97 years of age. The standard deviation is approximately 7 years old, and the 

respective coefficient of variation (CVs) is 9%, so we can consider the average as a good central 

indicator of the sample. Thus, in order to study the parameters analyzed by age, we started by 

organizing individuals into two groups separated by the average sample value, namely individuals 

aged 83 years or less and individuals aged over 83 years. The age frequency distribution can be seen 

in Table 3 as <= 83 years old and >83 years old. 

Table 3. Frequencies of the different ages. 

Class of Age Frequency Percent (%) Valid Percent (%) 

Valid 

[71; 83] 5 35.7 45.5 

(83; 97] 6 42.9 54.5 

Total 11 78.6 100.0 

missing N/D 3 21.4  

Total 14 100.0  

For the analysis of the signification differences between the averages of age groups, the Student 

t-test was used to compare the average values. The assumptions of normality were validated, and the 

equality of variances was tested using the Levene F-test, and it was concluded that the variances 

between the two age groups for all parameters under analysis are equal (Pr (F > F-test) = p-value > 

0.05) (Table 4). 

Initially, we processed the ECG and EEG sensor data to identify the different variables. In Table 

3, we can also observe the results of the Student’s t-test, through the respective limited probability 

associated with the test statistic (p-value) and the mean values for the different age ranges for the 

heart rate, linear heart rate variability, the average of QRS interval, the average of R-R interval, and 

the average of R-S interval variables obtained with the ECG sensor, and the frequency, and variability 

obtained with the EEG sensor, of the 11 individuals separated by age. Following the results by age, 

there are no homogeneous groups found in the sample. 

Through the results of the t-student test, we can conclude that, statistically, there are no 

differences between the means of the two age groups for someone of the analyzed parameters ((Pr 

(|T|> t -test) = p-value > 0.05); that is, age is not discriminating anything within each parameter 

Table 4. Average values of the Electroencephalography (EEG) and Electrocardiography (ECG) 

sensors by age for the 14 studied participants. 

Parameters N 

Class 

Age 

(Years 

Old) 

Mean ± Standard 

Deviation 

Standard 

Error of 

Mean 

Minimum Maximum 

p-Value 

F-

Test 

Student 

t-Test  

Heart Rate 
5 [71; 83] 90.8 ± 5.6 2.5 86 99 

0.295 .332 
6 (83; 97] 95.5 ± 8.8 3.6 84 107 

Linear Heart 

Rate Variability 

(%) 

5 [71; 83] 108.2 ± 16 3.8 73 120 

0.698 0.898 
6 (83; 97] 104.5 ± 19.5 4.5 58 121 

Average of QRS 

interval (ms) 

5 [71; 83] 654.8 ± 55.5 13.1 578 763 
0.347 0.633 

6 (83; 97] 646.6 ± 40.3 9.3 599 714 

Average of R-R 

interval (ms) 

5 [71; 83] 1365.3 ± 371.3 87.5 1018 2013 
0.729 0.895 

6 (83; 97] 1543.9 ± 390.9 89.7 899 2169 

5 [71; 83] 464.6 ± 181.9 42.9 279 683 0.669 0.189 
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Average of R-S 

interval (ms) 
6 (83; 97] 233.8 ± 139.9 32.1 16 396 

Frequency of 

EEG 

5 [71; 83] 290.5 ± 132.8 31.3 111 434 
0.237 0.916 

6 (83; 97] 243.6 ± 58.9 13.5 151 313 

Variability of 

EEG (%) 

5 [71; 83] 88.9 ± 15.8 3.7 64 109 
0.239 0.480 

6 (83; 97] 103.6 ± 27.8 6.4 31 122 

3.3.2. Results by Disease 

Finally, we processed the ECG and EEG sensor data to identify the different variables. In Table 

5, the average values are presented for the heart rate, linear heart rate variability, the average of QRS 

interval, the average of R-R interval, and the average of R-S interval variables obtained with the ECG 

sensor, and the frequency, and variability obtained with the EEG sensor of the individuals separated 

by disease. This analysis was performed with the disorders present in more than one person. 

Following the results by illness, there are no homogeneous groups found in the sample. 

Table 5. Descriptive statistics of the ECG and EEG sensors by disease for the 14 studied participants. 

Parameter Disease N 

Mean ± 

Standard 

Deviation 

Standard 

Error of 

Mean 

95% Confidence 

Interval for 

Mean Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Heart Rate 

Arterial hypertension 12 93.5 ± 7.2 2.1 89.0 98.1 84 107 

Cardiac arrhythmia 2 86.5 ± 0.7 0.5 80.2 92.9 86 87 

Heart failure 6 90.7 ± 6.0 2.5 84.4 97.0 84 97 

Diabetes mellitus Type II 5 93.2 ± 5.7 2.6 86.1 100.3 86 100 

Depression 3 89.0 ± 7.0 4.0 71.6 106.4 84 97 

Vertigo syndrome 2 94.0 ± 0.0 0.0 94.0 94.0 94 94 

Osteoarthritis 2 89.0 ± 7.1 5.0 25.5 152.5 84 94 

Osteoporosis 2 89.0 ± 7.1 5.0 25.5 152.5 84 94 

Hyperuricemia 2 92.0 ± 7.1 5.0 28.5 155.5 87 97 

Bilateral gonarthrosis 2 97.0 ± 0.0 0.0 97.0 97.0 97 97 

Chronic obstructive 

pulmonary disease 
1 92.0 ± 7.1 5.0 28.5 155.5 87 97 

Linear 

Heart Rate 

Variability 

(%) 

Arterial hypertension 12 98.4 ± 20.9 6.0 85.1 111.7 58.00 122.00 

Cardiac arrhythmia 2 100.0 ± 22.6 16.0 −103.3 303.3 84.00 116.00 

Heart failure 6 117.4 ± 4.4 1.8 112.7 122.1 110.00 122.00 

Diabetes mellitus Type II 5 104.0 ± 21.8 9.7 77.0 131.0 73.00 122.00 

Depression 3 119.4± 3.4 2.0 111.0 127.8 115.60 122.00 

Vertigo syndrome 2 103.7 ± 23.1 16.4 −104.1 311.4 87.30 120.00 

Osteoarthritis 2 120.4 ± 0.5 0.4 115.9 124.8 120.00 120.70 

Osteoporosis 2 120.4 ± 0.5 0.4 115.9 124.8 120.00 120.70 

Hyperuricemia 2 103.0 ± 26.9 19.0 −138.4 344.4 84.00 122.00 

Bilateral gonarthrosis 2 116.0 ± 8.5 6.0 39.8 192.2 110.00 122.00 

Chronic obstructive 

pulmonary disease 
1 97.0 ± 18.4 13.0 −68.2 262.2 84.00 110.00 

Average of 

QRS 

interval 

(ms) 

Arterial hypertension 12 634.2 ± 33.0 9.5 613.2 655.1 579.6 686.1 

Cardiac arrhythmia 2 644.1 ± 42.4 30.0 262.9 1025.3 614.1 674.1 

Heart failure 6 647.4 ± 39.6 16.2 605.9 688.9 614.1 713.5 

Diabetes mellitus Type II 5 637.0 ± 29.3 13.1 600.6 673.4 617.3 686.1 

Depression 3 645.9 ± 27.8 16.0 577.0 714.9 620.0 675.2 

Vertigo syndrome 2 637.7 ± 26.5 18.7 400.1 875.3 619.0 656.4 

Osteoarthritis 2 647.1 ± 39.7 28.1 290.1 1004.1 619.0 675.2 

Osteoporosis 2 647.1 ± 39.7 28.1 290.1 1004.1 619.0 675.2 

Hyperuricemia 2 647.1 ± 38.3 27.1 303.4 990.8 620.0 674.1 

Bilateral gonarthrosis 2 666.8 ± 66.1 46.8 72.7 1260.8 620.0 713.5 

Chronic obstructive 

pulmonary disease 
1 693.8 ± 27.9 19.7 443.5 944.1 674.1 713.5 

Average of 

R-R 

interval 

(ms) 

Arterial hypertension 12 
1419.1 ± 

285.1 
82.3 1238.0 1600.2 899 1725 

Cardiac arrhythmia 2 
1507.0± 

203.7 
144.0 −322.7 3336.7 1363 1651 
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Heart failure 6 
1433.8 ± 

415.2 
169.5 998.1 1869.6 1018 2169 

Diabetes mellitus Type II 5 
1385.2 ± 

282.5 
126.3 1034.5 1735.9 1018 1678 

Depression 3 
1255.0 ± 

52.7 
30.4 1124.1 1386.0 1198 1302 

Vertigo syndrome 2 
1371.5 ± 

499.9 
353.5 −3120.1 5863.1 1018 1725 

Osteoarthritis 2 
1108.0 ± 

127.3 
90.0 −35.6 2251.6 1018 1198 

Osteoporosis 2 
1108.0 ± 

127.3 
90.0 −35.6 2251.6 1018 1198 

Hyperuricemia 2 
1314.0 ± 

69.3 
49.0 691.4 1936.6 1265 1363 

Bilateral gonarthrosis 2 
1717.0 ± 

639.2 
452.0 −4026.2 7460.2 1265 2169 

Chronic obstructive 

pulmonary disease 
1 

1766.0 ± 

569.9 
403.0 −3354.6 6886.6 1363 2169 

Average of 

R-S interval 

(ms) 

Arterial hypertension 12 
336.1 ± 

147.3 
42.5 242.5 429.6 15.77 683.00 

Cardiac arrhythmia 2 336.0 ± 21.2 15.0 145.4 526.6 321.00 351.00 

Heart failure 6 
314.3 ± 

214.7 
87.6 89.0 539.6 15.77 683.00 

Diabetes mellitus Type II 5 
405.4 ± 

160.3 
71.7 206.4 604.4 277.00 683.00 

Depression 3 
208.9 ± 

169.7 
98.0 -212.6 630.5 15.77 334.00 

Vertigo syndrome 2 
515.5 ± 

236.9 
167.5 −1612.8 2643.8 348.00 683.00 

Osteoarthritis 2 
349.4 ± 

471.8 
333.6 −3889.6 4588.4 15.77 683.00 

Osteoporosis 2 
349.4 ± 

471.8 
333.6 −3889.6 4588.4 15.77 683.00 

Hyperuricemia 2 314.0 ± 52.3 37.0 −156.1 784.1 277.00 351.00 

Bilateral gonarthrosis 2 266.0 ± 15.6 11.0 126.2 405.8 255.00 277.00 

Chronic obstructive 

pulmonary disease 
1 303.0 ± 67.9 48.0 −306.9 912.9 255.00 351.00 

Frequency 

of EEG 

Arterial hypertension 12 249.7 ± 88.9 25.7 193.2 306.1 111 434 

Cardiac arrhythmia 2 225.5 ± 24.7 17.5 3.1 447.9 208 243 

Heart failure 6 301.5 ± 67.5 27.6 230.7 372.3 243 434 

Diabetes mellitus Type II 5 
283.8 ± 

115.5 
51.6 140.4 427.2 111 434 

Depression 3 277.7 ± 6.0 3.5 262.7 292.6 272 284 

Vertigo syndrome 2 381.0 ± 75.0 53.0 −292.4 1054.4 328 434 

Osteoarthritis 2 
353.0 ± 

114.6 
81.0 −676.2 1382.2 272 434 

Osteoporosis 2 
353.0 ± 

114.6 
81.0 −676.2 1382.2 272 434 

Hyperuricemia 2 246.0 ± 53.7 38.0 −236.8 728.8 208 284 

Bilateral gonarthrosis 2 291.5 ± 10.6 7.5 196.2 386.8 284 299 

Chronic obstructive 

pulmonary disease 
1 253.5 ± 64.4 45.5 −324.6 831.6 208 299 

Variability 

of EEG (%) 

Arterial hypertension 12 90.7 ± 25.6 7.4 74.4 107.0 31.00 122.00 

Cardiac arrhythmia 2 93.5 ± 23.3 16.5 −116.2 303.2 77.00 110.00 

Heart failure 6 108.8 ± 10.8 4.4 97.5 120.2 89.00 122.00 

Diabetes mellitus Type II 5 96.0 ± 13.38 6.0 79.4 112.6 85.00 112.00 

Depression 3 114.3 ± 6.8 3.9 97.4 131.2 109.00 122.00 

Vertigo syndrome 2 84.0 ± 7.1 5.0 20.5 147.5 79.00 89.00 

Osteoarthritis 2 105.5 ± 23.3 16.5 −104.2 315.2 89.00 122.00 

Osteoporosis 2 105.5 ± 23.3 16.5 −104.2 315.2 89.00 122.00 

Hyperuricemia 2 94.5 ± 24.75 17.5 −127.9 316.9 77.00 112.00 

Bilateral gonarthrosis 2 111.5 ± 0.7 0.5 105.2 117.9 111.00 112.00 

Chronic obstructive 

pulmonary disease 
1 94.0 ± 24.0 17.0 −122.0 310.0 77.00 111.00 



Computers 2020, 9, 67 12 of 22 

 

4. Discussion 

4.1. Main Findings 

During the performance of the Timed-Up and Go test, we used ECG and EEG sensors to acquire 

the data and correlate the presence of mental and cardiac diseases. The sample of this study includes 

a diversity of people with different disorders. Thus, the experimental set was composed of sensors 

available in the off-the-shelf mobile device, i.e., accelerometer and magnetometer, and a pressure, 

ECG, and EEG sensors connected to a BITalino device. These sensors are practical to use and non-

invasive, allowing the acquisition of different types of data. The data were acquired since the 

individual gets up from the chair and returns to the initial position. 

This test was applied to older adults, who anonymously provided their age and information 

about their diseases for further analysis of the data acquired. The study of the data was performed 

considering three viewpoints: the viewpoint by age, by the institution, and by diseases related to 

cardiac and neurological problems. Between the persons analyzed, none of them reported 

neurological disorders. They reported illnesses that can be detected with ECG and EEG sensors, 

including arterial hypertension, arrhythmia, heart failure, coronary artery disease, Parkinson’s 

disease, and others. By the end, the environmental conditions may have also affected the results of 

the test. The ECG values for the arrhythmia and heart failure are similar, and the values for 

identifying Parkinson’s disease, and bilateral gonarthrosis are identical. 

Therefore, we performed two types of analysis. These are the relation of the data acquired by 

the different sensors and the diseases reported by the individuals. After that, the statistical correlation 

between the data obtained and the disorders said. 

Starting with the analysis of the data reported by the individuals, and based on the information 

related to the previous works, arterial hypertension may be identified with the amplitude of QRS 

interval lower than 700 ms, where most of the analyzed individuals reported this disease, except the 

persons 4 and 11. 

In continuation, the identification of persons with arrhythmia or heart rate failure is identified 

by the irregularities of the heartbeat. Thus, the linear heart rate variability may be used to recognize 

these types of diseases, verifying if it is higher than 100%. Most of the persons reported these diseases, 

such as the persons 2, 6, 7, 8, 10, and 11. 

Finally, the identification of Parkinson’s disease and Bilateral gonarthrosis can be performed 

with the high average of QRS interval and an average R-R interval of more than 2000 ms, allowing 

the easy recognition of persons 4 and 11. However, person 10 also has bilateral gonarthrosis, but it is 

not very well recognized because other diseases are present in this person. In this case, the differences 

in the data related to the Bilateral gonarthrosis and other diseases are minored. 

Due to the different conditions of the test’s performance, arterial hypertension is more verified 

in persons of different ages, except the persons with 76 and 97 years old. Additionally, comparing 

the different ages, arrhythmia, or heart rate failure is only verified with the increasing, where the 

persons with age equal to 81, 83, 84, 89, and 97 years old. A pattern of persons with coronary artery 

disease cannot be identified with the comparison of the different ages. In addition, analyzing the 

different ages, Parkinson’s disease, and Bilateral gonarthrosis can be verified in persons aged 76 and 

97. 

Generally, the difference is correctly identified with the various parameters and constraints 

during the data acquisition. There are no diseases related to the EEG reported by the population, but 

it is verified that the variability of brain activity increases with age. Additionally, brain activity is 

lower in people with Parkinson’s disease. 

For the diseases and parameters, the two-way analysis of variance test (two-way ANOVA) was 

performed with the aim of verifying the interaction between the two factors, in order to understand 

the presence of a disease affected by the values recorded by ECG and EEG sensors. 

The model that includes the sources of disease variation and the interaction parameters vs. 

diseases is highly significant (Pr (F > F test) = 0 for both sources of variation), which means that there 

is an interaction between both parameters and disease factors. 
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Through the analysis of the confidence intervals for the mean of interaction between Heart Rate 

with Diseases, it is possible to conclude that there are no significant differences between the mean 

values of this interaction (Figure 2) 

 

Figure 2. The 95% confidence interval for mean of interaction between Heart Rate with Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Linear 

Heart Rate Variability with Diseases, it is possible to conclude that there are no significant differences 

between the mean values of this interaction (Figure 3). 

 

Figure 3. The 95% confidence interval for mean of interaction between Linear Heart Rate Variability 

with Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Average of 

QRS interval with Diseases, it is possible to conclude that there are no significant differences between 

the average values of this interaction (Figure 4) 

 

Figure 4. The 95% confidence interval for mean of interaction between Average of QRS interval with 

Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Average of 

R-R interval with Diseases, it is possible to conclude that there are significant differences between the 

average values of this interaction. In fact, the average values recorded in patients with Bilateral 

gonarthrosis is statistically higher than the values recorded in patients with arterial hypertension, 

depression, Diabetes mellitus Type II, Osteoarthritis and Osteoporosis (Figure 5). On the other hand, 
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in the case of these last two diseases, the averages of QRS interval values are expected to be 

statistically equal but lower, followed by depression. 

 

Figure 5. The 95% confidence interval for mean of interaction between Average of R-R interval with 

Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Average of 

R-S interval with Diseases, it is possible to conclude that there are no significant differences between 

the average values of this interaction (Figure 6). Even so, the average value of this parametron in 

vertigo syndrome is highlighted. On the other hand, we highlight similar intermediate values for 

arterial hypertension, cardiac arrhythmia, heart failure, osteoarthritis, osteoporosis and 

hyperuricemia, as opposed to depression with a lower value. 

 

Figure 6. The 95% confidence interval for mean of interaction between Average of R-S interval with 

Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Frequency 

of EEG with Diseases, it is possible to conclude that there are no significant differences between the 

average values of this interaction (Figure 7). Even so, the average value of this parametron n in vertigo 

syndrome disease stands out with higher values, followed by osteoarthritis and osteoporosis. In 

contrast, cardiac arrhythmia, hyperuricemia, and arterial hypertension. 
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Figure 7. The 95% confidence interval for mean of interaction between Frequency of EEG with 

Diseases. 

Through the analysis of the confidence intervals for the mean of interaction between Variability 

of EEG with Diseases, it is possible to conclude that there are no significant differences between the 

mean values of this interaction (Figure 8). 

 

Figure 8. The 95% confidence interval for mean of interaction between Variability of EEG with 

Diseases. 

In Figure 9, we can verify the estimated marginal averages resulting from the interaction 

between parameters and diseases. The parameters of heart rate, linear heart rate variability, average 

of QRS amplitude, and EEG variability are practically constant for the diseases analyzed. 

In the case of arterial hypertension, cardiac arrhythmia, Diabetes mellitus Type II, Vertigo 

Syndrome and Hyperuricemia, the values of Average of R-S interval are higher than the values of 

Frequency EEG. For depression and Bilateral gonarthrosis, the reverse is true. 

We can also verify that when these two parameters are the same, we are in the presence of heart 

failure, osteoarthritis or osteoporosis. 

Following the Average of R-R interval, we observed that a large difference between this 

parameter and the Average of R-S interval can mean the presence of Bilateral gonarthrosis disease, 

cardiac arrhythmia or arterial hypertension. Lower differences can mean the presence of 

osteoporosis, osteoarthritis, depression or hyperuricemia. 
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Figure 9. Marginal estimated means of the interaction between diseases and parameters. 

4.2. Limitations 

In carrying out the experiments, the capture and calculation of the different features posed some 

challenges. Thus, the elderly had very different health states, which meant that the acquired values 

showed high heterogeneity. The environment for the performance of the test also varies, causing 

different variations on the data. 

As the acquired data were stored in the FireBase service, which needs an available Internet 

connection that sometimes is not possible in real-time. Additionally, as we were using the BITalino 

device to acquire the data from pressure, ECG, and EEG sensors, the use of the over-the-air 

connection, i.e., Bluetooth, failed sometimes, causing some inconsistencies in the data. If detected, the 

individuals repeated the experiments to obtain reliable data. Commonly, all participants performed 

the experiments three consecutive times. 

Finally, another limitation present in the different experiments was related to data processing 

and storage, which may be difficult to perform in real-time on the mobile device. The BITalino device 

does not include the timestamps, but it includes a control bit every 10 ms, where we consider its 

capture after the start of the data acquisition. The data acquisition was started with an acoustic signal, 

where the data started to acquire. The major challenge was related to the synchronization of the data 

acquisition, which was sometimes not possible. 

4.3. Comparison With Prior Work 

Based on the studies analyzed in Section 1.3, 24 diseases were recognized in the 17 research 

studies, but the majority lack the presentation of detailed parameters for the detection. Still, the 

majority (20 diseases) does not present the details about the recognition, providing only information 

about the use of artificial intelligence. Between the diseases reported in the literature, Cardiovascular 

death [47] is detected by the measurement of the P-R interval, and the amplitude of QRS complex. 

Next, the Primary and secondary pulmonary hypertension [48] is detected with the Frontal mid-axis 

of the QRS complex. Coronary artery disease [51] is detected by the Amplitude of QRS complex, and 
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depressions of S-T and T-wave. A couple of diseases, i.e., Left and right bundle branch block, 

premature ventricular contraction, Wolff–Parkinson–White syndrome, myocardial ischemia, and 

myocardial injury are detected by the authors of [53] with durations of P-wave, S-wave, T-wave, QRS 

interval, P-R interval, Q-T interval, and S-T segment, and the amplitudes of P-wave, R-wave, and T-

wave. Parkinson’s disease and Bilateral gonarthrosis are detected by the authors of [54] with the 

duration of R-R interval, P-R interval, QRS interval, and Q-T interval. In [55], left and right ventricular 

hypertrophies are detected with the measurement of heart rate, amplitudes of P-wave, T-wave, and 

QRS interval, and durations of P-wave, P-R interval, QRS interval, Q-T interval, and corrected Q-T 

interval. In continuation, Alzheimer’s disease [56,57,62] is commonly detected with statistical, 

amplitude and frequency-based features, and signal strength, window strength, and sample entropy. 

Acute ischemic stroke [63] is detected with densities of the power spectrum. Finally, Epilepsy [58–61] 

is detected with the 2nd order cumulants (mean ± standard deviation), asymmetry, kurtosis, spectral, 

Renvi, Kolmogorov–Sinai, variance, energy, and the maximum and minimum values of the power 

spectral density. Between the four diseases that have details about the recognition, i.e., Bradycardia, 

Tachycardia, Premature ventricular contraction, and Premature atrial contraction, one of them was 

available in our dataset as presented in Table 6. We also verified the normal values of the different 

parameters for further comparison [67–69]. 

However, the diseases highlighted in Table 6 were present in our dataset, which verified 

different conditions for its recognition. 

Table 6. Values of the different features measured by different studies. 

Study Diseases Parameters 
Values in the 

Literature 

Average Values 

Obtained in our 

Study 

Normal Values 

in Healthy 

Adults 

[45] Bradycardia Heart rate <60 bpm N/A 
>60 bpm 

<92 bpm 

[45] Tachycardia Heart rate >100 bpm N/A 
>60 bpm 

<92 bpm 

[45] 
Premature ventricular 

contraction 

Duration of 

QRS interval 
>120ms N/A 

>75.5 ms 

<108.0 ms 

[45] 
Premature atrial 

contraction 
Heart rate 

>60 bpm 

<100 bpm 
N/A 

>60 bpm 

<92 bpm 

[49] Atrial fibrillation 

Duration of P-

wave 
N/D N/A 

>80 ms 

<120 ms 

Heart rate Irregular N/A 
>60 bpm 

<92 bpm 

[50] Arrhythmia 
Heart rate 

variability 
N/D >100% N/A 

- Heart rate failure 
Heart rate 

variability 
N/A >100% N/A 

- Arterial hypertension 
Duration of 

QRS interval 
N/A <700 ms 

>75.5 ms 

<108.0 ms 

[54] 
Parkinson’s disease; 

Bilateral Gonarthrosis 

Duration of R-

R interval 
N/A >2000 ms 

>600 ms 

<1200 ms 

Duration of 

QRS interval 
N/A >700 ms 

>75.5 ms 

<108.0 ms 

N/A: Not Available. N/D: Not Defined. 

Considering the values available in Table 6, it is possible to verify the effects of different diseases 

and the age of people analyzed in the different studies. The values presented by the authors of [45] 

are correlated between older adults and healthy adults. The values presented by the authors of [49] 

are not comparable as the authors did not present the values obtained. The authors of [50] also did 

not present the values of heart rate variability, but a pattern was verified with our study. Comparing 

the values reported in other studies to the ones reported in our study, it is evident that the durations 

of R-R and QRS intervals are higher in older adults. This is an interesting observation that could have 
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policy implications. For example, some policies might be enhanced to include additional analysis 

with ECG and EEG during Timed Up and Go tests to hopefully detect some emerging medical 

conditions before they become too serious. However, in some cases, our dataset may not be enough 

for the identification of the right patterns, as verified in the recognition of Coronary artery disease. 

To do that, more individuals with different disorders are needed. Likewise, if some medical condition 

is identified with the proposed approach, it should be validated with a more traditional clinical 

method to avoid false positives. 

5. Conclusions 

The use of functional tests with systems that allow the acquisition of biological signals presents 

an optimal combination when we want to conclude investigations of this type, and the main goals of 

this study were to design and develop a method for the acquisition, analysis, and identification of 

different patterns of diseases with low-cost sensors. 

As it was included in research on the results of the Timed-Up and Go test, it was only possible 

to collect the ECG and EEG signals from a small number of individuals. In the future, this study 

should be extended to a larger sample to investigate other dependencies. The reported values are in 

line with other studies in the literature. 

In this sense, the Timed-Up and Go test, with all its phases and aspects, presents itself as a great 

example because it allows the analysis of data related to movement and therefore applied to 

physiotherapy. On the other hand, the measurement of physical effort and the measurement of 

signals related to the cardiac and neurological systems can also be calculated and analyzed. 

The ECG and EEG data allow us to know and analyze the functioning of the heart and brain 

during the effort. The use of statistical methods of analysis based on the variance in each individual, 

considering their physical state, allows us to know and build a set of relationships and patterns for 

each of the diseases related to the cardiac and neurological system. 

The presented results show that it is possible to find correlations between existing diseases and 

different features extracted from ECG and EEG signals collected during Timed-Up and Go tests. The 

applied statistical methods suggest that investigation of this type can be critical in helping doctors 

and in the first analysis of a patient. It shows patterns in the analyzed diseases, showing that people 

with the same diseases have very similar values, which is very encouraging considering the aim of 

the study—to detect emerging medical conditions early on. The main contribution of this paper is 

that the proposed solution was developed end-to-end and uses affordable sensors and devices, and 

computational methods that are easily deployed on mobile devices with limited computing power 

and battery capacity. 

In the future, and as the development of this research, it will be important to apply artificial 

intelligence and machine learning methods to allow the calculation and identification of diseases 

automatically. 
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