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Abstract: Due to the increasing age of the European population, there is a growing interest in 
performing research that will aid in the timely and unobtrusive detection of emerging diseases. For 
such tasks, mobile devices have several sensors, facilitating the acquisition of diverse data. This 
study focuses on the analysis of the data collected from the mobile devices sensors and a pressure 
sensor connected to a Bitalino device for the measurement of the Timed-Up and Go test. The data 
acquisition was performed within different environments from multiple individuals with distinct 
types of diseases. Then this data was analyzed to estimate the various parameters of the Timed-Up 
and Go test. Firstly, the pressure sensor is used to extract the reaction and total test time. Secondly, 
the magnetometer sensors are used to identify the total test time and different parameters related to 
turning around. Finally, the accelerometer sensor is used to extract the reaction time, total test time, 
duration of turning around, going time, return time, and many other derived metrics. Our 
experiments showed that these parameters could be automatically and reliably detected with a 
mobile device. Moreover, we identified that the time to perform the Timed-Up and Go test increases 
with age and the presence of diseases related to locomotion. 

Keywords: Timed-Up and Go test; sensors; mobile devices; accelerometer; magnetometer; pressure 
sensor; feature detection; diseases; older adults 

 

1. Introduction 

1.1. Background 

The increasing age of the world population has promoted research in several areas and advances 
in different types of sensors, which have contributed to the evolution of healthcare assessment 
methodologies [1]. The increased life expectancy has led to growing interest and the need for 
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solutions that can improve the quality of life of the elderly. In Europe, the aging rate was 125.8% in 
2017, and 94.1% in 2001 [2–5]. 

Mobile computing technologies made it possible to aid individuals with different health 
statuses. They now include multiple sensors, which can be used for a verity of diverse functions [6]. 
The magnetometer and the accelerometer are essential because they facilitate the acquisition of 
physical and biological data from the user [7–9]. Moreover, these sensors can support the analysis of 
bodily functions like gait [10,11]. Furthermore, combining mobile computing technologies with 
external sensors can promote older people’s quality of life [12]. However, in such studies, there are 
challenges related to choosing adequate tests, and interpretation and analysis of the collected data 
[13–17]. 

Embedded sensors may help to monitor the different functional tests with the detection of 
different types of movements [18–22]. The Timed-Up-and-Go test is a quick and straightforward 
clinical test for assessing lower extremity performance related to balance, mobility and fall risk in the 
elderly population and people with pathologies (i.e., Parkinson’s disease, amyotrophic lateral 
sclerosis, in post-stroke patients, in patients with orthopedic pathologies, and cardiovascular 
incidents) [23–28]. Aging effects can be identified with the Timed-Up-and-Go test, and it could be 
supplemented with smart technology to be used in clinical practice [29]. The automation of the 
measurement of sensor data when performing the Timed-Up and Go test can be valuable, particularly 
in older adults [30,31]. Some approaches, such as [32], make it possible to perform the Timed-Up and 
Go test using low-cost devices in a real-time setting with reduced needs of processing capabilities to 
be used in commonly used devices. 

1.2. Motivation 

The Timed-Up and Go test can provide a practical analysis of the degree of prevalence and level 
of certain diseases [33]. With this test, clinicians can assess physical conditions by evaluating the way 
the individual walks, and the time it takes to perform the analysis. Therefore, this test allows the 
medical team to assess whether the individual has an accelerated degree of disease development or 
is in the initial state [34]. 

Furthermore, the Timed-Up and Go test can be used in individuals with neurological diseases 
[35]. This test allows for the evaluation of their reaction time. It is possible to assess whether they get 
up quickly or still stop for a long time. Moreover, it is possible to evaluate whether the individual 
walks in a straight line or cannot maintain the correct direction [36,37]. Therefore, this test can also 
provide a practical assessment of cognitive problems that do not allow him to follow the right path. 

This test is widely used in assessing a patient’s recovery process associated with diseases that 
have affected their mobility [38]. The data collected in this test support the evaluation of patient 
recovery to establish standards related to the reaction time, test time, angular derivation, and walking 
strength that an individual with different degrees of the disease might have [39]. 

This paper’s motivation is to present a cost-effective method for the automatic measurement of 
the Timed-Up and Go test using sensors available on common smartphones. This document also 
states the calculation of numerous features that aim to create a reliable dataset for pattern recognition 
on specific health symptoms. Moreover, this study provides a comparative analysis of different 
subjects, which live in nursing homes separated by age, institution, and various diseases of people, 
finalizing with the comparison with the other results available in the literature to state the useful 
contribution of the proposed approach. 

Finally, the major challenge with this is related to the definition of the best positioning of the 
sensors for the correct data acquisition. Thus, it affects the measurement of the different results of the 
Timed-Up and Go test, e.g., in case the experiments are performed under adverse conditions, the 
probability of having the incorrect measurement of the results is very high. Technological constraints 
may also affect the data acquisition and processing, such as low memory, power processing, 
connectivity, network, and battery constraints of the mobile devices [40,41]. Previously, we explored 
and presented the positioning of the sensors available in a mobile device or connected in a Bitalino 
device with the preliminary results in [42,43]. 
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1.3. Prior Work 

There are some studies available in the literature that involved the calculation of the different 
features related to the Timed-Up and Go test for further conclusions about the performance of the 
test. The inertial sensors, e.g., accelerometer, magnetometer, and gyroscope, available in a mobile 
device may be used to evaluate the benefits of the training based on the Timed-Up and Go test, 
calculating the velocity and the time of a sit-to-stand transition [44]. 

Fall risk assessment based on wearable inertial sensors was performed based on an instrumented 
Timed-Up and Go test in [45], relying on a variety of features, as summarized in Table A1. The types 
of gait and balance were evaluated with a similar set of features in [46]. The accelerometer sensor was 
used for the identification and measurement of the duration of each stage of the Timed-Up and Go 
test in individuals with spinal cord injury [47]. The different phases were also evaluated in [48] with 
an accelerometer sensor, measuring the mobility angles, and the average of the sit-to-stand transition 
time in frail elderly individuals with Parkinson’s disease. In [49], the measurement of the Timed-Up 
and Go test results was performed with an accelerometer sensor for fall risk assessment. The different 
phases of the test for people with Parkinson’s disease were analyzed in [50] and [51]. In [52], patients 
with Parkinson’s disease were analyzed during a walking activity to measure the duration of the test. 
A smartphone application suite for assessing mobility is presented in [53]. Whether the individual 
was sitting during the Timed-Up and Go test is investigated in [32]. The authors of [54] perform 
analysis, mainly focusing on people with frailty syndrome. A wearable system for assessing mobility 
in older adults is presented in [55], relying on a variety of statistical features. Similarly, a wearable 
system for measuring the probability of human falls is introduced in [56], while [17] is concerned 
with identifying the reasons for falls. In [57], the authors show that the mobile device accelerometer 
can study and analyze the Romberg test’s kinematic between frail and non-frail older adults. 

In summary, Parkinson’s disease was analyzed in six studies [46,48,50–52,58], Arthrosis [45,53] 
and Frailty syndrome [54,57] in two studies, and Dizziness [45], hypertension [45], polypharmacy 
[45], and spinal cord injury [47] in one study each. 

1.4. Structure of the Study 

The remainder of this paper is organized as follows: Section 2 presents the methods used for the 
development of the proposed analysis, including the study design and participants, description of 
the Timed-Up and Go test, the data acquisition and processing methods used, and the statistical 
analysis performed in this study. The mobile application developed for data acquisition, the 
requirements, and the statistical analysis are presented in Section 3. Furthermore, Section 4 offers a 
discussion on the main findings, limitations, and comparison with our study’s prior work. In the end, 
Section 5 presents the conclusions of this study. 

2. Methods 

2.1. Study Design and Participants 

We selected Android as the operating system for data collection software development as it is 
open-source software and a market leader. Moreover, we chose the external Bitalino sensors for their 
appropriate use in research projects in this research domain [59]. This technology could facilitate the 
creation of significant datasets for health assessment that can be used to support decision-making in 
medical diagnostics. The mobile device was incorporated in a sports belt to be worn on the waistline. 
The start of the Timed-Up and Go test was indicated by a sound alarm using the mobile application. 
The chair incorporated a pressure sensor to register the moment when the older adult re-acted to this 
sound. The volunteer had to walk for 3 m, go back, and sit down again. All the data were collected 
on the mobile device, and, after test finalization, a text file was sent to the Cloud by using the FireBase 
service. Different mobile devices were used for data acquisition to compare the different frequencies 
of the data acquisition, which verified that the XIAOMI MI 6 was one of the devices that more 
accurately acquired the different types of data. As the experiments were controlled, we used the same 
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device for final data acquisition and analysis. The data acquisition showed an influence of the 
environment and varied with the place for data acquisition. It was associated with the study of older 
adults with different health conditions and ages and resulted in the creation of a dataset with diverse 
and heterogeneous data. 

The data acquired were processed with the Java programming language to extract the different 
features for the statistical analysis. Firstly, the pressure sensor is used to measure the reaction and 
total test time. Secondly, the magnetometer sensors are used to extract the total test time, turning 
around instant by the magnitude of the vector and turning around instant by the absolute value of 
the z-axis. Finally, the accelerometer sensor is used to extract the reaction time, total test time, 
duration of turning around, going time, return time, and the averages of the acceleration, velocity, 
force, and power during going and returning time.  

The proposed method was tested on 40 older adults with an age of 60- to 97-years-old (83.8 ± 
7.95), privileging gender equality from four institutions, such as Centro Comunitário das Lameiras, 
Lar Aldeia de Joanes, Lar Minas, Lar da Misericórdia, and others. The “others” corresponds to an 
open group from different locations. They have several types of health complications, such as 
Parkinson’s disease, scoliosis, mobility, and cardiovascular problems, and dementia complications 
(presented in Table A2). The volunteers were institutionalized in nursing homes in the center of 
Portugal. The selection process was conducted in close collaboration with the nursing team. 
However, the inclusion criteria relied on mobility capabilities to perform the test. The individuals are 
randomly selected, and there is no relationship between the individuals and the team of this study. 
The volunteers were informed about all the specifications and goals of the experiments. 

Furthermore, they signed an ethical agreement allowing us to share the results of the tests in an 
anonymous form. The agreement also provided the participants’ informed consent considering the 
risks and the objective of the study. Ethics Committee from Escola Superior de Saúde Dr. Lopes Dias 
at Polytechnic Institute of Castelo Branco approved the study with the number 114/CE-ESALD/2019. 

Moreover, other information such as age and weight were provided to support the conclusions 
of the study. These data were guaranteed to be used in an anonymous form. The data were then 
measured using a feature extraction method that will be explained in Section 2.2.  

Only consistent data were considered in these results. The experiments were held between 
October and December 2019, and each volunteer underwent the test at three different times. These 
tests were conducted in an isolated environment to avoid any distractions, which could impact the 
results. Each institute provided the chair used in the experiments. The volunteers had different health 
states, some of them still healthy, had diseases related to the spine, such as multiple sclerosis, diseases 
related to the heart, arrhythmia, or angina pectoris, or illnesses associated with the mental health, 
such as Parkinson’s. These people had various health statuses and distinct degrees of progress for 
each disease, which indicated that the population’s health status was variable. Thus, the data 
collected were heterogeneous. 

The mobile application acquired the data from the sensors at intervals of milliseconds, but it was 
converted to seconds to improve its readability. The collection process started with an audible signal. 
This sound signal represented the beginning of the data capture, which was recorded in text files and 
sent over the Internet using the Firebase service. Initially, the data were saved in text files. The 
accelerometer and magnetometer were tri-axis sensors, represented in four columns in the different 
files, including timestamps and one column for each axis of the sensors (x, y, and z). Further, the 
pressure sensor acquired the force performed with the user sitting on the chair. These sensors were 
complementary for the measurement of the different parameters of the Timed-Up and Go test. 

2.2. Description of the Timed-Up and Go Test and Data Acquisition and Processing 

The Timed-Up and Go test was developed in 1991 to examine functional mobility in the elderly 
[60,61]. This test allows the recognition of other different diseases, mainly related to walking 
activities. It has certain phases where it is possible to obtain different readings and calculations of 
various features, such as sitting on the chair, lifting from the chair, walking for three meters, reversing 
the march, walking another three meters toward the chair, and sitting on the chair.  
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The data acquisition was performed with a mobile device equipped with accelerometer and 
magnetometer sensors, placed in a belt at the waist of the person, and two Bitalino devices, i.e., one 
with a pressure sensor placed on the back of the chair, and the other with one ECG and one EEG 
sensor placed in a belt at the chest of the individual. 

Currently, only the data acquired from the pressure sensor and the sensors available in the 
mobile device are processed. Thus, different calculations are performed, including reaction time, time 
of the end of data acquisition, the total time of the test, turning instant, turning time, walking time, 
returning time, the average of the acceleration, speed, force, and power. The measurements of the 
speed, strength, and power are essential to detect some abnormalities in the actions of older adults. 

2.3. Statistical Analysis 

After the acquisition of the data from the sensors available in off-the-shelf mobile devices and 
the sensors connected to the Bitalino device, the data analysis was performed. Firstly, the data 
acquired by the pressure sensor were processed, extracting the reaction time and the total test time. 
Secondly, the data obtained by the magnetometer sensor were processed, extracting the start time, 
the end time, the instant and acceleration value of turning around by the Euclidean norm, and the 
instant and acceleration value of turning around by the minimum absolute value of the acceleration. 
Thirdly, the data acquired by the accelerometer sensor were processed, extracting the start, reaction, 
end, and total test times, the instant and duration of turning around, time of walking the first three 
meters, time to walk back to the chair, and the mean of the acceleration, velocity, force, and power 
during the walk for the first three meters and during the walk back to the chair. 

After measuring the different variables, a statistical comparison between them was performed, 
analyzing and comparing the results to the averages of each institution, person, and healthcare 
disease. Also, descriptive statistics, normality tests, and the detection of outliers were performed. 
After checking the conditions and making sure we can apply ANOVA, we used it to compare 
averages between institutions and age groups. Thirdly, the results were analyzed by each disease. 
The ANOVA test was used for the dependence between the different variables to test the relation 
between the results obtained and the sample characteristics. ANOVA is a statistical test that allows 
the discovery of potential differences or relations between different variables useful in testing with 
the distinct features of human beings [62,63]. It will enable the assessment of possible ties and 
dependencies between different variables. As the Timed-Up and Go test is a physical test related to 
people’s physical conditions, different variables may be affected.  

3. Results 

3.1. Data Acquisition with a Mobile Application 

The mobile application was developed for Android devices using the Android Studio Integrated 
Development Environment (IDE). The mobile application has two main functionalities. On the one 
hand, this mobile application performs a continuous data collection using the built-in magnetometer 
and accelerometer sensors. The data are collected with a sampling rate of 1 kHz and 16 bits of 
precision. On the other hand, the mobile application handles the communication technologies 
required to receive data through Bluetooth from the Bitalino device with a pressure sensor but is also 
responsible for sending the collected data to the Firebase service for storage. The analysis showed 
that the mobile devices with embedded sensors provide reliability and automation in the Timed-Up 
and Go test, unlike traditional measurement methods that require manual measuring.  

3.2. Requirements 

There are two different types of requirements verified for the performance of the experiments, 
i.e., one related to the environment and the other to the individual. For the execution of the Timed-
Up and Go test, the individual should have the possibility to walk, stand-up, and sit-down on the 
chair independently. It needs a chair, a tape-measure for the identification of the place related to the 
three meters to walk, and an adhesive tape to mark the site where the individual should reverse the 
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gait. Also, electrodes to position the EEG and ECG sensors in the individual, an adhesive tape to fix 
the pressure sensor on the chair, and two sports belts to carry the mobile device and the Bitalino 
device are used.  

3.3. Comparison of Different Acquired Data 

There are a few options to measure the turning around instant, which are: 

• The minimum value or amount of the magnitude of the vector of the accelerometer, calculated 
after the reaction time; 

• The minimum absolute value of the z-axis of the magnetometer, calculated after the reaction 
time. 

Based on the presented steps for the calculation of the turning around instant, the first moment 
of mobility, and the start time of the test can be measured by the accelerometer and the pressure 
sensor.  

Incidentally, the analysis performed in this paper includes several values. These are: 

• Pressure sensor: reaction time, whole test time;  
• Magnetometer: total acquisition time, turning around instant by the magnitude of the vector, 

turning around moment by the absolute value of z-axis; 
• Accelerometer: reaction time, total test time, duration of turning around, going time, return time, 

the average acceleration during going time, the average acceleration during return time, the 
average velocity during going time, the average speed during return time, the average force 
during going time, the average force during return time, the average power during going time, 
the average power during return time; 

Next, the presentation of these results by age (Section 3.3.1), by institution (Section 3.3.2), and by 
disease (Section 3.3.3) will be performed. 

3.3.1. Results by Age 

After checking the requirements, we used the ANOVA test. We found out that there is no 
statistically significant difference (alpha = 0.05) between the three age groups for all 
variables/measurements of interest. Figure 1 shows the mean values for the different age ranges for 
the reaction time and total test time variables obtained with the pressure sensor. Thus, the results of 
the F-test, through the respective limited probability associated with the test statistic allowed us to 
conclude that the average values between the three age groups are statistically equal for the analysis 
for the magnetometer sensor, such as Pr (F > F-test) = 0.231 > 0.05 for the total test time variable, and 
Pr (F > F-test) = 0.815 > 0.05 for the reaction time variable. Therefore, we accept the null hypothesis 
that the averages are statistically equal. Although the averages are statistically equal, it is interesting 
to note that both for the reaction time and for the total variable test time, it is the younger individuals 
who have shorter times, as expected. However, the group of individuals in this age group is only five 
people, and the group of older individuals is only eight people. For statistically more relevant results, 
the population needs to be increased in future experiments. 
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Figure 1. Analysis of reaction time and total test time with pressure sensor by age range. 

Then, in Figure 2, we can observe the mean values for the different age range for total test time, 
turning around instant measured by the magnitude of the vector, and turning around moment 
measured by the absolute value of z-axis variables obtained with the magnetometer sensor. 

 

Figure 2. Analysis of total test time, turning around instant measured by the magnitude of the vector 
and turning around instant measured by the absolute value of the z-axis with the magnetometer 
sensor by age range. 

The results of the ANOVA test, through the respective limit probability associated with the test 
statistic, allowed us to conclude that the average values between the three age groups are statistically 
equal for any of the variables under analysis for the magnetometer sensor, namely 32.88 (s) for total 
test time (Pr (F > F-test) = 0.637 > 0.05), 20.21 (s) for turning around instant measured by the magnitude 
of the vector Pr (F > F-test) = 0.772 > 0.05, and 20.28 (s) for turning around moment measured by the 
absolute value of z-axis variables obtained with the magnetometer sensor Pr (F > F-test) = 0.735 > 0.05. 

3.3.2. Results by Institution 

Aiming to investigate any differences between the participating institutions in this study, we 
performed a set of ANOVA tests where alpha = 0.5. In cases when there is a statistically significant 
difference (p < alpha), we applied Tukey’s multiple comparison tests to identify homogeneous 
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institutions. For conciseness, we only list the parameters which are statistically significantly different 
between the institutions (p < alpha). 

Namely, the variables with a significant difference in the mean for different institutions are: total 
test time (s), the conclusion is that there are significant differences between institutions (p-value = 0.03 
< alpha = 0.05). The total test time (s) by the pressure sensor, the turning around instant by the 
absolute value of z-axis (s) by the magnetometer, the total and return test times (s), the averages of 
velocity during going and returning time (m/s), and the averages of power during going and 
returning time (J), the total test, going and returning times (s), the average of velocity during return 
time (m/s), the total test and return times (s), and the averages of velocity and power during going 
time (m/s) by accelerometer and magnetometer. 

Also, we concluded that the average values of all institutions are statistically equal for the 
reaction time, duration of turning around, the averages of acceleration, velocity, force, and power 
during going and returning times. The results of this analysis can show that more generic features 
are statistically equal in different institutions, and therefore might be useful for drawing general 
conclusions that apply to older adults in general. 

3.3.3. Results by Disease 

At this stage, approximately 40 different pathologies associated with the subjects were 
identified. Some individuals have only one pathology, but others have more diseases and from very 
diverse areas, as shown in Table 1. Of the 40 individuals involved in the study, there are 11 patients 
with one pathology, nine patients with two pathologies, five patients with three pathologies, five 
patients with four pathologies, two patients with five pathologies, and only one patient with 6, 7, and 
9 pathologies. We can also see the number of individuals identified by pathology and the 
classification of the respective pathologies by respective categories. This analysis reflects the great 
diversity of pathologies vs. individuals under study, which may make it difficult and even 
compromise inferential statistical analysis. 

 

Table 1. Distribution of the different diseases involved in the study. 

  Number of Occurrences 
Related 

with 
Mobility 

Osteoarticular diseases 
(Total of 17 individuals) 

Arthrosis 4 Yes 
Scoliosis 2 Yes 

Leg amputation 2 Yes 
Bilateral gonarthrosis 2 Yes 

Osteoarthritis 4 Yes 
Lumbar hernias 1 Yes 

Prosthesis in the right 
humeral 1 Yes 

Osteoporosis 4 Yes 

Cardiovascular diseases 
(Total of 18 individuals) 

Arterial hypertension 16 No 
Cardiac arrhythmia 4 No 

Arteriosclerotic coronary 
disease 

1 No 

Heart failure 5 Yes 
Acute myocardial 

infarction 1 No 

Chronic Venous 
Insufficiency of the lower 

limbs 
1 No 
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  Number of Occurrences 
Related 

with 
Mobility 

Lung diseases  
(Total of four individuals) 

Pulmonary fibrosis 1 No 
Chronic obstructive 
pulmonary disease 2 Yes 

Chronic bronchitis 2 Yes 

Neurological and balance 
disease 

(Total of six individuals) 

Parkinson 3 Yes 
Dementia 1 Yes 

Chronic headaches 1 No 
Sequelae of surgery to 

brain injury 1 No 

Psychiatric illnesses 
(Total of six individuals) 

Post-traumatic stress 1 No 
Depression 5 No 

Nephro-urological disease 
(Total of nine individuals) 

Hypocoagulated 1 No 
Anemia 3 No 

Chronic kidney disease 3 No 
Prostate cancer 4 No 

Digestive system and 
abdominal wall disease 

(Total of three individuals) 

Umbilical hernia 2 No 
Inguinal hernia 1 Yes 

Cirrhosis 1 No 
Gastroenteritis 1 No 

Metabolic disorder 
(Total of 10 individuals) 

Hyperuricemia 2 No 
Diabetes mellitus Type II 9 No 

Also, it was not possible to read all sensors in the same way for all individuals, resulting in 
different numbers of samples for the different variables under study. As presented in Table 2, two 
groups were formed with the pathologies under analysis, including one for diseases directly related 
to mobility, and others with the other conditions found in the population. 

Table 2. Distribution of the different diseases found in the population by its relation to mobility. 

Related to Mobility Not Related to Mobility 

- Arthrosis 
- Scoliosis 
- Leg amputation 
- Bilateral gonarthrosis 
- Osteoarthritis 
- Lumbar hernias 
- Prosthesis in the right humeral 
- Osteoporosis 
- Heart failure 
- Chronic obstructive pulmonary 

disease 
- Chronic bronchitis 
- Parkinson 
- Dementia 
- Inguinal hernia 

- Arterial hypertension 
- Cardiac arrhythmia 
- Arteriosclerotic coronary disease 
- Acute myocardial infarction 
- Chronic Venous Insufficiency of the lower limbs 
- Pulmonary fibrosis 
- Chronic headaches 
- Sequelae of surgery to brain injury 
- Post-traumatic stress 
- Depression 
- Chronic anemia 
- Hypocoagulated 
- Anemia 
- Chronic kidney disease 
- Prostate cancer 
- Umbilical hernia 
- Cirrhosis 
- Gastroenteritis 
- Hyperuricemia 
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Related to Mobility Not Related to Mobility 
- Diabetes mellitus Type II 

In Figure 3, we can observe the mean and the standard deviation values for reaction time and 
total test time measured by the pressure sensor by groups of diseases related to mobility and not 
directly related to movement. Through using the Student’s t-test to compare two groups of 
independent samples, it was possible to assess whether there are statistical differences in the level of 
measurements made between individuals with diseases related to mobility and not associated with 
movement.  

 
Figure 3. Analysis of reaction time and total test time with a pressure sensor. 

First, we concluded the variances are homogeneous (Pr (F > F-test) = 0.079 > 0.05). With the 
Student’s t-test, it was possible to conclude that the reaction time (s) between the two groups of 
diseases not related and related to mobility is equal (Pr (|T| > t-test) = 0.838 > 0.05), and the average 
is statistically similar to 37.133 (s). Hence, it can be said that the 13 individuals with pathologies not 
related to mobility take less time to perform the test (36.044 vs. 38.222), but this difference is not 
statistically significant. 

Furthermore, the same conclusions can be achieved from the total test time (s) that has identical 
variances between the groups of diseases not related and related to mobility ((Pr (F > F-test) = 0.960 > 
0.05)), and the average is statistically equal (Pr (|T| > t-test) = 0.710 > 0.05). 

In Figure 4, it is possible to observe the mean values for the total test time (s), turning around 
instant by the magnitude of the vector (s) and turning around instant by the absolute value of the z-
axis (s) by magnetometer sensor by diseases related or not related to mobility. 
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Figure 4. Analysis of total test time turning around instant by the magnitude of the vector and turning 
around instant by the absolute value of the z-axis with the magnetometer sensor. 

With the application of the Student’s t-test for comparing the variables measured in the 
magnetometer sensor, by diseases related or not related to mobility, it was concluded that there are 
no significant differences in measurements between diseases related to mobility and not related to 
mobility. However, we can verify the following conclusions: 

• The total test time (s) has homogeneous variances between the groups of diseases not related 
and related to mobility (Pr (F > F-test) = 0.459 > 0.05), and the average is statistically equal  
(Pr (|T| > t-test = 0.490 > 0.05); 

• The turning around instant by the magnitude of the vector (s) has non-homogeneous variances 
between the groups of diseases not related and related to mobility (Pr (F > F-test) = 0.029 < 0.05), 
but the average is statistically equal (Pr (|T| > t-test = 0.642 > 0.05); 

• The turning around instant by the absolute value of the z-axis (s) has homogeneous variances 
between the groups of diseases not related and related to mobility (Pr (F > F-test = 0.628 > 0.05), 
and the average is statistically equal (Pr (|T| > t-test = 0.961 > 0.05). 

4. Discussion 

4.1. Main Findings 

The Timed-Up and Go test performed by the elderly population showed a considerable diversity 
of data because the participants had different types of diseases. The various physical states of each 
participant in the study demonstrated that the evaluation of the test was reliable with the use of 
sensors. Thus, the sensors available in the off-the-shelf mobile devices allowed practical data 
acquisition and further conclusions in real-time. Further, we used a pressure sensor for the reliable 
detection of the mobility of getting up from the chair. Thus, for additional findings, we extracted 
several features from the accelerometer and the magnetometer available in off-the-shelf mobile 
devices, and pressure sensors connected to the Bitalino device. 

We anonymously collected the age and different diseases of people to consider during the test’s 
application in older adults. The data were analyzed from different viewpoints, including the 
measurements by each person, institution, and disease. It was proven that environmental conditions 
were essential for the reliability of the analysis of the results. 

The conditions of the performance of the test, data acquisition, and network connection were 
adverse in two institutions, namely Lar Aldeia de Joanes and Lar Minas, as presented in Table 3. 
Considering the measurements performed by the data acquired from the magnetometer sensor, only 
the data obtained for 32 persons were reliable for further analyses. The relevant report was presented 
in Table 3. Thus, it is verified that the time measured by the magnetometer sensors was lower than 
the time measured with the data acquired from the pressure sensor. Considering the measurements 
performed using the data received from the accelerometer sensor, we concluded that the use of only 
the accelerometer sensor invalidated some tests in the calculation of the turning around instant. Only 
16 persons performed the experiments with reliability, Table 3 presents the data. However, fusing 
these data with the measurements performed by the magnetometer sensor and using the turning 
around moment measured by the magnitude of the vector, we found that 22 persons performed the 
experiments with reliability. By using the turning around instant measured by the absolute value of 
the z-axis, we found that 33 persons performed the examinations successfully. Considering the 
measurements performed using the data acquired from the accelerometer sensor, we found that the 
use of only the accelerometer sensor invalidated some tests in terms of the calculation of the turning 
around instant. Thus, only three institutions performed the experiments with reliability, and only 
people with nine diseases were analyzed. However, fusing these data with the measurements 
performed by the magnetometer sensor, we concluded that the six institutions performed the 
experiments with reliability. Therefore, we find that the return time was higher than the going time 
with higher acceleration, velocity, force, and power during the return time. Thus, we concluded that 
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the return time was higher than the going time with higher acceleration, velocity, force, and power 
during the return time. With the fusing of these data with the measurements performed by the 
magnetometer sensor and using the turning around moment measured by the magnitude of the 
vector, we analyzed 16 diseases. Using the turning-around instant measured using the absolute value 
of the z-axis, we analyzed 27 illnesses. 

Table 3. Relation between sensors and results obtained. 

Sensors Parameters 
Analysis 

By Age By Institution By Diseases 

Pressure 
sensor 

Reaction time - 

It is higher in 
Lar Aldeia de 

Joanes and Lar 
Minas (14.860 s), 
and lower in Lar 
Nossa Senhora 

de Fátima (5.948 
s) 

It is higher in persons 
with sequelae of surgery 
to brain injury (16.830 s), 

and lower in persons 
with pulmonary fibrosis, 

acute myocardial 
infarction, and 

hypocoagulated (3.477 s) 

Total test time 

It is lower in an 
individual of 
60-years-old 
with scoliosis 

(21.070 s) 

- 

It is higher in an 
individual with a leg 

amputation and diabetes 
mellitus Type II (92.950 

s). 

Magnetometer 
sensor 

Total test time 

It is lower in an 
individual of 
60-years-old 
with scoliosis 

(19.761 s) 

It is lower in 
Centro 

Comunitário 
das Lameiras 
(28.778 s), and 

higher in 
institutions with 
poor conditions 

(74.053 s) 

It is higher in people 
with osteoarticular 

pathology and a 
prosthesis in the right 

humeral (66.947 s), and 
lower in people with 
arthrosis (24.528 s) 

Turnaround 
measured by 

the magnitude 
of the vector 

The time is 
higher in an 
individual of 
89-years-old 

with problems 
related to 

mobility (51.742 
s) 

The instant is 
lower in Lar da 

Misericórdia 
(2.591 s) 

The instance is higher in 
people with congestive 
heart failure (28.886 s), 

and lower in people 
with osteoarticular 

pathology and 
prosthesis in the right 
humeral (3.836 s), and 
the time is higher in 
people with lumbar 
hernias and a gastric 

ulcer (30.643 s) 

Turning 
around 
instant 

measured by 
the absolute 

value of the z-
axis 

It is higher in 
participants 

with 
osteoarthritis of 

87-years-old 
(39.649 s). 

It is lower in 
Centro 

Comunitário 
das Lameiras 

(8.433 s), and it 
is higher in Lar 
Nossa Senhora 

de Fátima 
(39.649 s). 

It is lower in people with 
osteoarticular pathology 
and a prosthesis in the 
right humeral (8.704 s), 

and it is higher in people 
with osteoarthritis 

(39.649 s) 
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Accelerometer 
sensor 

Times 
Average of 10.521 s in reaction time, 45.538 s in total test time, 

13.272 s in going time, and 21.944 s in return time 
Turning 
around In average, the duration is 0.436 s, and the instant is 23.566 s 

Acceleration 
Average of 9.96 m/s2 in going time, and −11.43 m/s2 in return 

time. 

Velocity  Average of 15.12 m/s in going time, and −5.51 m/s in return 
time. 

Force  Average of 713.37 N in going time, and −1886.03 N in return 
time. 

Power  Average of 6233.21 J in going time, and −8491.09 J in return 
time. 

Some individuals reported an inconsistency between the different diseases and the results 
obtained by the values acquired using the various sensors, and this inconsistency could be attributed 
to the adverse conditions of the data acquisition. In general, older adults have more than one disease. 
Still, the best results obtained with the magnetometer were obtained in people with arthrosis disease, 
where the person only has arthrosis, and the other people have several diseases. The same problem 
was observed in the case of people with osteoarticular pathology, and prosthesis in the right humeral, 
where the going time was lower than that for the other people. In conclusion, the sensors might report 
bad data, and the findings might be argued. The other problem was that people with osteoarticular 
pathology and prostheses in the right humeral reported better results in the measurement of turning 
around than people with lumbar hernias and gastric ulcers. They were attributed to the fact that 
people with gastric ulcers had more than one disease, and people with several diseases reported 
higher times than the others. 

To ensure that these data collection methodologies can be used to assess physical and functional 
performance in the clinic, this data should be valid, reliable, and with proper responsiveness, as has 
been demonstrated by the Timed-Up and Go test in a variety of conditions [64,65]. 

4.2. Limitations 

As presented in Table 4, there are three possible origins of limitations found, such as individuals, 
environment, and technical. The older adults and environments for the different tests are 
heterogeneous. However, other technical barriers related to the Internet and Bluetooth connection 
availability, and synchronization between the various devices were found. The individuals 
performed the examination three consecutive times to avoid some problems, and the acquisition 
started at the same time in all devices. 

Table 4. Relation between the origin and limitations of the study. 

Origin Limitation 
Individuals Different health conditions. 

Environment The experiments were performed in uncontrolled environments. 

Technical 

The Internet connecting is needed for data synchronization. 
Bluetooth connected reported some failures. 

A large volume of data needs to be processed in the mobile device. 
Data cannot be processed in real-time. 

Sometimes it was not possible to consistently synchronize the timestamps of the 
acquired data, because Bitalino does not have real timestamps.  

4.3. Comparison with Prior Work 

Different studies analyzed the performance of the Timed-Up and Go test with sensors to 
measure the various parameters. Still, only two studies [45,50] show the values of the measured 
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parameters. These studies are not comparable with the values obtained in our study, because they 
only calculate the power. There are multiple literature surveys of the Timed-Up and Go test [60,64,66], 
but they do not explicitly consider the inclusion of older adults. It is also evident because of the 
discrepancy in the reported values of high power, which is uncommon for older adults who usually 
have low energy. As the people of other studies are younger, the power/energy used to perform the 
Timed-Up and Go test is higher than in our research, reporting −28,934.32 J. However, it depends on 
the health diseases and age of older adults in the study. The age range of participants in our study is 
higher than the studies available in the literature. 

Among the other approaches that use mobile devices for automation of the Timed-Up and Go 
text, the most prominent ones are [32,45,49,67]. Similarly, our study also measures the duration of the 
Timed-Up and Go test and identify the different stages. Unlike them, our study is mainly performed 
by older adults, uses multiple sensors to monitor the various movements, and measures parameters 
including power, velocity, acceleration, force, reaction time, and others, to measure the performance 
of the test more accurately. The main differences and advantages of our study are presented in Table 
5. 

Table 5. Comparison of the studies in the literature with our study. 

Study Differences Compared to Our Study Advantages of Our Study 

[45] 

The study is related to the fall risk assessment, 
and our research is associated with the analysis 

of the performance of the Timed-Up and Go 
test for the creation of patterns by age, disease, 

and institution. 

Our study proved that a relation 
between diseases related to mobility 

and the performance of the Timed-Up 
and Go test exists, allowing the 

creation of different patterns with the 
inertial sensors. 

[49] 

The study identified the different phases of 
Timed-Up and Go sensors. The authors also 
calculated the Minimal Detectable Change 

based on the speed, where we identified the 
various stages, and measured the force, power, 

and acceleration of the movement. 

The older adults sometimes performed 
more force and power than the other 

population. The measurement of these 
parameters is vital to identify the 

reliability of the test in the different 
repetitions. 

[32] 

The study tracks the different stages of the 
Timed-Up and Go test, and the angles of the 

knee and ankle. Our study identified the 
different phases and made other 

measurements. 

Our study is focused on older adults 
that commonly have different 

pathologies, performing different 
measurements and relationships 

between diseases. 

[67] 

The authors implemented machine learning 
methods for the distribution of the individuals 

in different groups to cluster the types of 
diseases. 

Our study performed the analysis of 
the different features extracted with a 

focus on the diseases related to the 
movement.  

5. Conclusions 

The Timed-Up and Go test is an easy test used to measure different types of mobility. This study 
considered performed the analysis of older adults. This test consists of the individual sitting on the 
chair, getting up from the chair, walking three meters, reversing the direction of the walking, walking 
another three meters to back to the chair, and sitting on the chair.  

The automatic measurement of the Timed-Up and Go test with mobile devices is possible, 
validating the different parts of the test. This work considers the data acquired from the various 
sensors available in the mobile device, including the accelerometer and magnetometer sensors, where 
the magnetometer sensors help in the detection of the changes of the direction during the test, where 
the accelerometer sensors allow the measurement of the acceleration, velocity, force, and power. A 
Bitalino device with a pressure sensor in the chair is used to detect the mobility’s start. Another 
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Bitalino device was used to acquire the electrocardiography (ECG) and electroencephalography 
(EEG) for future processing. 

This work aimed to analyze the data obtained in different elderly institutions with various 
conditions. It was verified that data acquisition conditions influenced data acquisition. The different 
diseases of the individuals also affect the results of the performance of the Timed-Up and Go test. 
Through the automatic calculation of the features, different values were obtained. Thus, various 
analyses were carried out by age, institution, and type of disease, which allowed the measurement of 
exciting results. It was verified that this study allows the possibility to create different patterns of 
physical states of people. However, several constraints may have influenced the experiment’s results, 
including the test environment and the reception conditions of the network. The data are somewhat 
heterogeneous because we are analyzing older adults with different health conditions. The statistical 
grouping by different age ranges allows us to show the influence that age may have on the test results. 
The Timed-Up and Go test has been demonstrated to be an accessible and clinically relevant test to 
assess mobility, balance, and risk of falls in the elderly and other populations with health problems. 

With the rise of chronic health conditions, it is fundamental to create accessible, valid, and 
reliable online instruments that evaluate and record physical health performance, like the Timed-Up 
and Go test. It is also vital to guarantee that the follow up gives a real evolution of this performance 
with some health treatments, such as physiotherapy. Future work may recognize different diseases 
with the values acquired during the experiments, considering the ECG and EEG sensors. The values 
obtained with the ECG sensor allow for the detection of dysrhythmias, ischemia, driving disorders, 
ST-segment abnormality, cavity overload, pericarditis, pericardial effusions, ion disorders, and 
congenital heart diseases. On the other hand, the values obtained with the EEG sensor allows the 
detection of convulsions, metabolic encephalopathies, structural encephalopathies, degenerative 
diseases, infections, sleep disorders, and memory changes.  

This pilot study proved to be a great way to help diagnose different types of diseases, whether 
they involve the individual’s motor capacity, whether cardiac or neurological. In the future, the use 
of low-cost systems and mobile sensors may help an evolution in medicine for the diagnostics of 
different diseases in people. 
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Appendix A 

This section presents Table A1 related to the features extracted in different studies. Also, it 
presents Table A2 related to the description of the population of the study. 

Table A1. Studies vs. Features extracted. 

Features Studies Number of 
Studies 

Duration of the test [17,32,49,51,52,54,55,58]  8 
Maximum [17,45,56–58] 5 

Mean [46,49,54,56,58] 5 
Duration of each stage [17,47,50,51,56] 5 

Root Mean Square (RMS) [45,46,56,58] 4 
Standard deviation [45,46,56,58] 4 

Velocity [32,44] 2 
Time of sit-to-stand transition [44,48] 2 

Minimum [45,57] 2 
Energy [45,46] 2 
Entropy [45,46] 2 

Mobility angles [32,48] 2 
Time of stand-to-sit [53,55] 2 

Time of prepare-to-sit [53,55] 2 
Time of sit-down [53,55] 2 

Time of lift-up  [53,55] 2 
Maximum change of the trunk angle [51,55] 2 

Maximum angular velocity during the lean forward 
and lift-up phases 

[51,55] 2 

Median deviation [45] 1 
Skewness [45] 1 

Interquartile range (IQR) [45] 1 
Kurtosis [45] 1 

Maximum and second maximum frequencies and 
amplitudes of the Fast Fourier Transform (FFT) [45] 1 

Number of times that the amplitude of the magnitude 
of the vector of accelerometer signal crosses the mean 

value 
[45] 1 

Mean of peak height [45] 1 
Correlation [46] 1 

Pitch [46] 1 
Signal Magnitude Area (SMA) [46] 1 

Signal Vector Magnitude (SVM) [46] 1 
Angular velocity of the mobility of the arm [50] 1 

Time to perform turn-to-sit [50] 1 
Time of lean forward phase [53] 1 
Time of the walking phase [53] 1 

Maximum angular velocities during lean forward and 
lift-up phases [53] 1 

Maximum change of trunk angle during the lean 
forward phase [53] 1 

Total number of steps during the walking phase and 
before the turn [53] 1 
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Stride length [32] 1 
Distance traveled [32] 1 

Length of the lean forward period [55] 1 
Number of steps during [55] 1 
Coefficient of variation [56] 1 

Jerk [58] 1 
 

Table A2. Description of the population of the study and test conditions. 

Institution Person 
ID 

Diseases 
Diseases 

Related to 
Mobility 

Age 
(years) 

Test Conditions 

Centro 
Comunitário 
das Lameiras 

1 Arthrosis Yes 85 

Chair without supports. 
Spacious place. Floor 

with the right 
conditions. Good mobile 

network coverage. A 
physical therapist 
monitored the test. 

Centro 
Comunitário 
das Lameiras 

2 Gastroenteritis No 92 

Centro 
Comunitário 
das Lameiras 

3 
Arterial hypertension; 

Arthrosis 
Yes 85 

Centro 
Comunitário 
das Lameiras 

4 
Arterial hypertension; 

Cardiac arrhythmia 
No 92 

Centro 
Comunitário 
das Lameiras 

5 
Arterial hypertension; 

Cardiac arrhythmia; Diabetes 
mellitus Type II; Scoliosis 

Yes 92 

Centro 
Comunitário 
das Lameiras 

6 Scoliosis Yes 85 

Centro 
Comunitário 
das Lameiras 

7 Osteoporosis Yes 83 

Centro 
Comunitário 
das Lameiras 

8 Arthrosis Yes 87 

Others 9 Scoliosis Yes 60 Excellent quality of 
mobile network 

coverage. Tight space in 
the kitchen. Chair with 

supports. 

Others 10 
Right leg amputation; 

Diabetes mellitus Type II 
Yes 77 

Lar Aldeia de 
Joanes 

11 N/D - N/D 

Weak mobile network 
coverage. Test site with 

the right physical 
conditions. The test was 

carried out in a place 
with other older adults. 

Chair with supports. 
Lar Minas 12 Arterial hypertension No 88 Mobile network 

coverage does not exist. 
Test site with Good 

physical condition of the 
test site. The test was 
carried out in a living 
room with other older 

Lar Minas 13 

Arterial hypertension; 
Cardiac arrhythmia; 

Arteriosclerotic coronary 
disease; Heart failure 

No 84 

Lar Minas 14 N/D - 65 
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Institution Person 
ID Diseases 

Diseases 
Related to 
Mobility 

Age 
(years) Test Conditions 

adults. Chair with 
supports. 

Lar da 
Misericórdia 

15 N/D - 91 

The basement of a 
building with little 

mobile network 
coverage. Chair with 
supports. Flat ground 

with a slight slope. 

Lar da 
Misericórdia 

16 N/D - 84 

Lar da 
Misericórdia 

17 
Hernioplasty in 2010; 

Sarcoidosis 
No 87 

Lar da 
Misericórdia 

18 
Chronic obstructive 

pulmonary disease; Chronic 
bronchitis; Osteoarthritis 

Yes 73 

Lar da 
Misericórdia  

19 
Cirrhosis; Anemia; Chronic 
kidney disease; Umbilical 

hernia; Inguinal hernia 
Yes 79 

Lar da 
Misericórdia  

20 
Right leg amputation; 

Umbilical hernia; Arterial 
hypertension 

Yes 88 

Lar da 
Misericórdia 

21 
Prostate Cancer; Parkinson’s 
disease; Post-traumatic stress 

Yes 76 

Lar da 
Misericórdia 

22 
Arterial hypertension; 

Diabetes mellitus Type II  
No 86 

Lar da 
Misericórdia 

23 

Prostate Cancer; 
Osteoporosis; Chronic 

Venous Insufficiency of the 
lower limbs; Chronic 

bronchitis 

Yes 92 

Lar da 
Misericórdia 

24 

Diabetes mellitus Type II; 
Arterial hypertension; 

Depression; Sequelae of 
surgery to brain injury 

No 83 

Lar da 
Misericórdia 

25 

Diabetes mellitus Type II; 
Vertigo syndrome; Chronic 
headaches; Osteoarthritis; 

Prosthesis in the right 
humeral; Osteoporosis; 
Arterial hypertension 

Yes 81 

Lar da 
Misericórdia 

26 
Arterial hypertension; 

Anemia 
No 91 

Lar da 
Misericórdia  

27 
Osteoarthritis; Depression; 

Heart failure; Arterial 
hypertension; Osteoporosis 

Yes 89 

Lar da 
Misericórdia 

28 N/D - N/D 

Lar da Nossa 
Senhora de 

Fátima 
29 Diabetes mellitus Type II;  No 86 

The test location was 
narrow. The mobile 

network coverage was of 
good quality. The floor 

and width of the test site 
were very tight. The 

chair had no supports. 

Lar da nossa 
senhora de 

Fátima 
30 

Dementia of vascular 
etiology; Prostate Cancer; 

Arterial hypertension; 
Vertigo syndrome 

Yes N/D 

Lar da nossa 
senhora de 

Fátima 
31 Depression; Osteoporosis Yes 83 
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Institution Person 
ID Diseases 

Diseases 
Related to 
Mobility 

Age 
(years) Test Conditions 

Lar da Nossa 
Senhora de 

Fátima 
32 

Diabetes mellitus Type II; 
Osteoarthritis 

Yes 87 

Lar da Nossa 
Senhora de 

Fátima 
33 

Diabetes mellitus Type II; 
Arterial hypertension; Heart 

failure; Hyperuricemia; 
Depression; Bilateral 

gonarthrosis 

Yes N/D 

Lar da nossa 
senhora de 

Fátima 
34 Prostate cancer No 88 

Lar da Nossa 
Senhora de 

Fátima 
35 

Heart failure; Chronic 
obstructive pulmonary 

disease; Bilateral 
gonarthrosis 

Yes 97 

Lar da nossa 
senhora de 

Fátima 
36 

Diabetes mellitus Type II; 
Arterial hypertension 

No 71 

Lar da nossa 
senhora de 

Fátima 
37 Arterial hypertension No 74 

Lar da Nossa 
Senhora de 

Fátima 
38 

Osteoarthritis; Lumbar 
hernias; Depression; Gastric 

ulcer 
Yes 82 

Lar da Nossa 
Senhora de 

Fátima 
39 

Heart failure; Arterial 
hypertension; Pulmonary 
fibrosis; Hyperuricemia; 
Anemia; Chronic kidney 

disease; Cardiac arrhythmia; 
Acute myocardial infarction; 

Hypocoagulated 

Yes N/D 

Lar da nossa 
senhora de 

Fátima 
40 Chronic kidney disease No 90 

N/D: The values were not reported by the older adults. 
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