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Abstract: Scene classification relying on images is essential in many systems and applications related
to remote sensing. The scientific interest in scene classification from remotely collected images is
increasing, and many datasets and algorithms are being developed. The introduction of convolutional
neural networks (CNN) and other deep learning techniques contributed to vast improvements in
the accuracy of image scene classification in such systems. To classify the scene from areal images,
we used a two-stream deep architecture. We performed the first part of the classification, the feature
extraction, using pre-trained CNN that extracts deep features of aerial images from different network
layers: the average pooling layer or some of the previous convolutional layers. Next, we applied
feature concatenation on extracted features from various neural networks, after dimensionality
reduction was performed on enormous feature vectors. We experimented extensively with different
CNN architectures, to get optimal results. Finally, we used the Support Vector Machine (SVM)
for the classification of the concatenated features. The competitiveness of the examined technique
was evaluated on two real-world datasets: UC Merced and WHU-RS. The obtained classification
accuracies demonstrate that the considered method has competitive results compared to other
cutting-edge techniques.

Keywords: remote sensing; convolutional neural network (CNN); feature extraction; feature fusion

1. Related Work

Scene classification is one of the main tasks in aerial image understanding. In this process,
a semantic label is assigned to images collected from remote locations [1,2]. Scene classification is also
known as image classification when it comes to remote sensing datasets, and these two expressions are
equally used throughout our paper. Remote sensing classification has found its usage in many areas:
battlefields, traffic control, and disaster observation [3,4]. Remote sensing images are a composition of
scene information and contain an enormous feature space describing the texture. Scene composition
of remote sensing images are often compound, and because of this, it might be challenging to get
the semantic label right from the image data [5,6]. This is the reason for developing numerous scene
classification techniques. In general, they can belong to one of the following categories: methods
that utilize low-level image features [7–20], methods using mid-level image representation [21–35],
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and methods using high-level image features [36–45]. In continuation, a brief literature review of
extracted feature-based classification methods is given.

With methods using low-level visual features, aerial scenes are classified from low-level visual
descriptors: spectral, textural, structural, and so on. The local fluctuation of structures in remote sensing
images is modeled by Scale Invariant Feature Transform (SIFT) [7] as a local structure descriptor.
Other descriptors utilize statistical and global distributions of specific image characteristics, like
color [12] and texture data [8,9]. In [10], the authors used the IKONOS dataset to compare SIFT
and Gabor texture features. In [11], authors compare various color and texture descriptors such as
color histograms and local binary pattern (LBP) [13] descriptors. Authors in [14] use six various
types of descriptors: SIFT, radiometric features, Grey Level Co-Occurrence Matrix (GLCM), Gaussian
wavelet features [15], shape features [16], and Gabor filters, and make a combination of them in
compound-feature figures with different spatial resolutions for remote sensing. In [17], the authors
use Gist and SIFT descriptors. Other descriptors used in the literature are the orientation difference
descriptor [18], and the Enhanced Gabor Texture Descriptor (EGTD) [19]. In [20], authors propose
completed local binary patterns with multi-scales (MS-CLBP) for remote sensing image classification,
and obtained cutting-edge results compared to other low-level methods.

The mid-level visual representation methods are another group of methods used for scene
representation, which attempt to represent scenes with the statistical representation of high-degree
locally extracted image features. They first perform local image feature extraction from local patches,
using descriptors such as color histograms or SIFT. Then these features are encoded for composing
a mid-level representation for remote sensing images. A commonly used mid-level method is
bag-of-visual-words (BoVW) [21]. This method first describes local scene pieces using SIFT [7]
descriptors, and afterward learns a vocabulary of visual words, e.g., utilizing k-means clustering.
The vocabulary is called a visual dictionary or visual codebook. This mid-level technique and its
variations are often suitable for representing aerial scenes. In remote sensing image classification
tasks, the basic BoVW method can be used with different local descriptors [22]: SIFT, LBP, color
histogram, GIST. Multiple features can be utilized for aerial scene classification, including hierarchical
classification methods and normalization with Extreme Value Theory (EVT) [23]. Another approach is
to apply a sparse coding method [24] where structural, spectral, and textural features are extracted and
encoded. The state-of-the-art performance can be achieved by performing dimensionality reduction
with Principal Component Analysis (PCA), before concatenating multi-features, or with methods
such as the Improved Fisher Vector (IFK) [25] and Vectors of Locally Aggregated Tensors (VLAT) [26].
The methods mentioned earlier do not incorporate the spatial distribution of visual words, which,
according to some authors, is important. Namely, [27] proposes the spatial pyramid co-occurrence
kernel (SPCK), which, despite the basic BoVW model, integrates the absolute and relative spatial
data. This method incorporates principles of spatial pyramid match kernel (SPM) [28] and spatial
co-occurrence kernel (SCK) [21]. In [29], the authors develop a model to integrate absolute and
relative spatial connections of local low-level representations into a pyramid-of-spatial-relations (PSR)
model. In addition to BoVW, there are mid-level classification models that take into account the
semantic connection between low-level local visual words for image representation. CIELab color
moments [31] are used with Latent Dirichlet Allocation (LDA) [30] and in [20]. GLCM [32] and edge
orientation histogram (EOH) [33] are other ways of extracting different information in the LDA model.
The probabilistic Latent Semantic Analysis (pLSA) technique [35] is adopted in [34].

The third group of techniques for image classification relay on high-level vision information.
There are a lot of computer vision assignments that can be successfully solved using deep
learning methods: image classification, object recognition, and image retrieval. Compared to
the methods exposed previously in this section, high-level methods can obtain more abstract and
discriminative semantic representations, which results in the achievement of better classification
performance. Feature extraction with convolutional neural networks (CNNs), pre-trained on massive
datasets [36], accomplishes great performance for aerial scene classification [5]. There are many freely
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available pre-trained deep CNN architectures: ResNet, DenseNet, Inception, Xception, and so on.
The classification accuracy of remote sensing images can be increased with a multiscale input strategy
for multi-view CNN learning, similar to what was shown for GoogleNet in [6]. Multi-ratio dense CNN
features from the final convolutional layer are extracted in [37], and afterward encoded with BoVW [38],
Vector of Locally Aggregated Descriptors (VLAD) [39] and Improved Fisher Kernel (IFK) [25] to form
the final scene presentation. Global features are extracted by Nogueira et al. [40] from the CNN models,
and they are fed to a classifier. This method has shown the effectiveness of transfer learning from object
classification models. In all of these examples, the global or local extracted feature representations
were acquired from CNNs pre-trained on datasets with natural images. Those features were utilized
for the classification of remote sensing images. Contrary to the deep learning methods described
above, an alternative is to optimize CNN from scratch, i.e., from randomly set parameter values.
However, as reported in [40], using the UC-Merced dataset [21] and the WHU-RS19 dataset [41] for
full training of CNNs like CaffeNet [42] or GoogLeNet [43] shows poor classification performance.
The reason for the poor performance and poor generalization is that large CNN architectures have
a huge number of parameters, and model training from aerial scene datasets with up to thousands
of images inevitably gets stuck in local minima. However, training CNNs from scratch using larger
datasets, such as AID [44] and NWPU-RESISC45 [45], has shown good results.

Introduction and Contributions

In our article, we use a remote sensing image classification architecture that leverages pre-trained
CNN models that are able to classify high-resolution aerial images. Our approach attempts to constitute
better features for aerial scenes from neural networks’ activations. The CNNs which are included in our
experiments are: ResNet50 [46], InceptionV3 [47], Xception [48], and DenseNet121 [49]. The models are
fully trained on the ImageNet [36] dataset. These CNNs perform feature extraction by removing some
of the layers of the original pre-trained network. Pre-trained CNNs have a complex architecture with
tens of layers, and feature extraction is made from various layers, as in [37]. We use activations from the
average pooling layer, last convolutional layer, and from some of the intermediate convolutional layers
over the entire image, in order to obtain feature representations of the scene. By doing this, we get a
convolutional feature vector with significant dimensionality. For this reason, feature dimensionality
reduction methods are utilized prior to concatenating these features with the features extracted
from average pooling layers. Following the feature extraction and feature fusion, there is a need
for a classifier to get semantic labels of aerial images. Our article proposes two widely used linear
classifiers—linear SVM and Logistic Regression Classifier (LRC)—to process the extracted features and
classify the scenes.

The used method generates excellent features for remote sensing scene classification. These features
are obtained with modifications of the pre-trained CNN models. The achieved classification
performance is on par with the state-of-the-art approaches.

The main contributions of this article are recapped as follows:

- Here, the last or intermediate CNN average pooling layers and convolutional layers are combined
to generate image scene features.

- We compare pre-trained CNN models InceptionV3 [47], ResNet50 [46], Xception [48],
and DenseNet121 for image features used for image scene classification.

- We present a technique for feature extraction utilizing pre-trained neural networks and perform
dimensionality reduction of the dense CNN activations from the convolutional layers (either
the last one or one of the intermediate convolutional layers) using the PCA. Afterward, feature
fusion of the convolutional layer activations and average pooling layers activations is evaluated,
based on the performance of linear classifiers Linear SVM and LRC.

- The examined technique is compared to the existing methods on two publicly available remote
sensing datasets, providing a baseline for aerial scene classification with deep learning methods.
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Datasets used are the UC-Merced dataset and the WHU-RS dataset. The reason for choosing
these two remote sensing datasets lies in the fact that they are commonly used, so it was convenient to
compare our experimental results with the achieved classification accuracies by other authors in the
related articles.

The remainder of this article is organized as follows. In Section 2, the methodologies used
for feature extraction and classification are presented, and how they were empirically evaluated is
described. Experimental results obtained from the examined remote sensing images classification
technique are presented in Section 3. Several factors have an impact on our method’s results, and they
are discussed in Section 4. We conclude and summarize the paper in Section 5.

2. Materials and Methods

This section of the article briefly describes all pre-trained CNNs used for feature extraction:
InceptionV3, ResNet50, Xception, and DenseNet121. These model architectures were used for feature
extraction because they exhibited superb performance in image classification on the ImageNet dataset.
Following that, we introduce the linear classifiers used for remote sensing images classification: LRC
and SVM, as well as the PCA that was used for dimensionality reduction. We observed similar
modeling techniques being used in related work [50]. Next, we describe the two publicly available
datasets, which were utilized in our study: the UC-Merced and the WHU-RS19 dataset. We use these
datasets to evaluate our approaches and compare them with related work. The section is closed with
the description of the experimental setup and the evaluation metrics used. The general workflow of
the proposed method and its phases are represented in Figure 1.
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2.1. Inception

GoogLeNet is a CNN that won the ILSVRC-2014 contest in part for classification and detection
tracks. GoogLeNet is a non-sequential CNN. It can increase its depth and width without causing
computational strain [43]. GoogLeNet uses the so-called “Inception module.” It comes from the idea
that multiple connections between layers lead to redundancy, because of the correlation between them.
“Inception module” is a CNN itself. “Inception module” consists of 22 layers and processes its input in
a parallel workflow. Within its intermediate layers, several auxiliary classifiers are included. Auxiliary
classifiers are inserted to boost the discrimination capability in the lower layers. This module can use
convolutional and pooling operations in each layer. For example, in AlexNet and VGG, each level
uses either a convolutional or a pooling operation. The main characteristic of the module is that filters
with different sizes are used in the same layer. This leads to a different size of the extracted patterns,
as well as more exhaustive information. The bottleneck layer, which is a 1 × 1 convolutional layer,
has a twofold function: to simplify the computations and to lower the CNN number of parameters.
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Besides the 1 × 1 convolutional layers, inception modules contain larger kernel convolutional filters,
3 × 3 and 5 × 5. In order to reduce the number of parameters at each level, 1 × 1 convolutional layers
precede 3 × 3 and 5 × 5 convolutional layers. After 1 × 1 convolutional layers, ReLU is used, and the
goal of this operation is to increase non-linearity and to deepen the network. In this network, there are
no fully connected layers; the average pooling layer is used instead. The absence of fully connected
layers decreases the number of parameters. The InceptionV3 network has fewer parameters compared
to AlexNet and VGG and yet is able to learn deeper presentations of features [48]. Figure 2 shows a
diagram of InceptionV3 CNN.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 25 

 

In this network, there are no fully connected layers; the average pooling layer is used instead. The 

absence of fully connected layers decreases the number of parameters. The InceptionV3 network has 

fewer parameters compared to AlexNet and VGG and yet is able to learn deeper presentations of 

features [48]. Figure 2 shows a diagram of InceptionV3 CNN. 

 

Figure 2. Schematic drawing of the InceptionV3 convolutional neural network (CNN) [51]. 

2.2. ResNet  

ResNet won the classification task of the ILSVRC-2015 contest. ResNet is a very deep CNN 

which consists of 152 layers [46]. Two main issues are related to difficulties in training deep 

architectures: high training error and the vanishing gradient problem. The problem with vanishing 

gradient causes learning inefficiency in network training. This inefficiency is present at the lower 

layers during backpropagation. ResNet solves the problem of vanishing gradient with an application 

of residual module. The deep learning residual module has a shortcut between the input and the 

output. The residual model has its mapping, which is fitted during the training phase by each layer 

in the module [46]. Network training is simpler on the residual map, compared to the underlying 

original network structure. ResNet contains mostly 3 × 3 convolutional filters. This property makes it 

similar to the VGG model. However, ResNet has fewer filters compared to the VGG network and is, 

therefore, simpler [46]. Figure 3 shows a schematic drawing of ResNet.  

 

Figure 3. Schematic drawing of the ResNet CNN [51]. 

2.3. Xception 

Figure 2. Schematic drawing of the InceptionV3 convolutional neural network (CNN) [51].

2.2. ResNet

ResNet won the classification task of the ILSVRC-2015 contest. ResNet is a very deep CNN which
consists of 152 layers [46]. Two main issues are related to difficulties in training deep architectures:
high training error and the vanishing gradient problem. The problem with vanishing gradient
causes learning inefficiency in network training. This inefficiency is present at the lower layers
during backpropagation. ResNet solves the problem of vanishing gradient with an application of
residual module. The deep learning residual module has a shortcut between the input and the output.
The residual model has its mapping, which is fitted during the training phase by each layer in the
module [46]. Network training is simpler on the residual map, compared to the underlying original
network structure. ResNet contains mostly 3 × 3 convolutional filters. This property makes it similar
to the VGG model. However, ResNet has fewer filters compared to the VGG network and is, therefore,
simpler [46]. Figure 3 shows a schematic drawing of ResNet.
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2.3. Xception

Another deep network that is similar to GoogLeNet is Xception. In the Xception, depth-wise
separable convolutional layers are used instead of the inception module [48]. The architecture of the
Xception model is based on two types of convolutional layers: a depth-wise convolutional layer [52]
and a pointwise convolutional layer. This CNN is an assemble of depth-wise separable convolutional
layers with residual connections (as depicted in Figure 4). The depth-wise convolutional layer is used
on every input data channel. Output channels are guided by pointwise convolutional layer (with
dimensions of 1 × 1), with the help of depth-wise convolution to a new channel space.
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2.4. DenseNet

Vanishing of the gradient is a network training problem which is connected with CNN depth.
DenseNet, as well as ResNet, fights this problem. The architecture of the DenseNet is based on all
layers’ connection, which provides the best information stream between layers [49]. In the DenseNet
network structure, each layer receives inputs from all previous layers, and it connects its outputs to
every layer ahead. The feature maps at each layer are serially chained to carry on data from previous
layers to subsequent layers. Due to the reason that there is no need to learn redundant information,
the number of parameters is decreased. All layers are connected, so the DenseNet efficiently preserves
the learned information. DenseNet121, a specific implementation of the DenseNet used in this paper,
exhibits excellent classification performance when it comes to small training datasets, and is not prone
to overfitting [49]. Figure 5 shows a diagram of DenseNet.
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2.5. Logistic Regression Classifier

Logistic Regression is a supervised Machine Learning (ML) method used for classification tasks.
The input X is a matrix containing N data instances, each described by K features. Inputs xij are
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K-length feature-vectors (xi’s), which are continuous, with indexes j = 1, . . . . . . , K and i = 1, . . . . . . , N.
Output yi falls in the interval {0, 1} and it is a binary variable, with Bernoulli distribution and parameter
pi. The decision/activation function of “Linear Classifier” Logistic Regression is called ‘logistic function’
(sigmoid). The main characteristic of the sigmoid function is to determine the output of one system in
the interval (0, 1), regardless of the variables on its input. The posteriors are expressed through the
logistic function as

P(Y/X) =
1

1 + e− f (x)
, (1)

In the above expression features
(
x j

)
and the corresponding weights

(
β j

)
make up the function f (x).

In addition to the ‘logistic function,’ this Machine Learning (ML) method has an “objective
function”—“Maximum Likelihood Estimation (MLE).” Its purpose is to make the “likelihood function”
of the training process as large as possible and is expressed with

argmax
β

: log
{∏n

i=1
P(yi/xi)

yi(1− P(yi/xi))
(1−yi)

}
, (2)

Its parameters are: the output y which is in the interval (0, 1), P(yi
∣∣∣xi) is the posterior probability

and is given with 1/
(
1 + e− f

)
, and the weights vector in f (x) − β.

2.6. Support Vector Machine (SVM)

The SVM is a discriminative classifier formally defined by a separating hyperplane. Given a
set of training data, the SVM finds an optimal hyperplane that categorizes new examples. Tuning
hyperparameters of an SVM model consists of the kernel choice, impact of regularization, gamma,
and margin.

The kernel can be linear, polynomial, exponential, etc. The kernel type we considered in this work
was linear. For the linear kernel, the prediction for input is calculated with

f (x) = B(0) + sum(ai ∗ (x, xi)). (3)

It is obtained with the dot product of the input (x) and each of the support vectors (xi). It calculates
the inner products of a new input vector (x) with all support vectors in training data. The coefficients
B(0) and ai (for each input) are estimated from the training data by the learning algorithm.

The polynomial kernel and exponential kernel are given with

K(x, xi) = 1 + sum(x ∗ xi)
∧d (4)

K(x, xi) = exp(−gamma ∗ sum
((

x− x2
i

))
(5)

The regularization parameter gives SVM optimization information to what extent to invalidate
misclassification of every single training sample. The optimization with a large regularization parameter
aims to achieve a better classification accuracy using a smaller-margin hyperplane. A small value of
the regularization parameter will cause a larger-margin separating hyperplane, usually resulting in a
reduced classification accuracy. The extent of influence of each training example is determined with
the gamma parameter. Small values of gamma imply ‘far,’ and big values of gamma imply ‘close.’

2.7. Dimensionality Reduction

The dimensions of the extracted features from the average pooling layers are one or two orders
of magnitude smaller compared to features extracted from the convolutional layers. In our research,
we wanted to have an even influence of the two types of extracted features on the classification process:
the ones from the average pooling layers as well as from the convolutional layers. Additionally, we did
not want the convolutional layer features to have a predominant effect on the classification accuracy
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because of the difference in vector dimensionality. This is the reason we performed a reduction of
dimensionality of the convolutional layer features with Principal Component Analysis (PCA), before we
concatenated them to average pooling layer features.

The PCA is a dimensionality reduction technique that determines a new group of data
dimensions (a group of the basis of views), which are used for projecting the data from the original
higher-dimensional space to a representation with smaller dimensions while preserving most of the
variance in the data. All the new dimensions are independent because of their orthogonality, and are
ranked depending on the variance of data within them. The first principal component preserves the
most variance. The following steps can summarize the PCA:

1. Calculate the covariance matrix X of input data points with dimensions m × n;
2. Eigenvectors and corresponding eigenvalues should be calculated next;
3. Order the eigenvectors according to their eigen, such that they are decreasing;
4. New reduced k dimensions will be the first k eigenvectors;
5. Transform the original n-dimensional data points into k dimensions.

The new matrix has n data, points each of them with k features

[new data]k∗n = [top k eigenvectors]k∗m[original data]m∗n (6)

The purpose of PCA is to spread out data to have a high variance, along with a smaller number of
dimensions, and there should be no covariance between dimensions. Therefore, the covariance matrix
of transformed data points should be diagonal.

2.8. Datasets

2.8.1. UC-Merced Dataset

The UC-Merced dataset [21] has 21 classes of aerial scene remote sensing images, as can be seen in
Figure 6. The pixel resolution of images is one foot. They are cropped to regions of 256 × 256 pixels.
The original images were downloaded from the United States Geological Survey (USGS) National Map
of the following US regions: Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston,
Jacksonville, Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara, Seattle,
Tampa, Tucson, and Ventura. Each of the 21 classes has 100 images, which are manually selected
and uniformly labeled: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection, medium-density residential, mobile home
park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts. What
makes the dataset difficult for classification is that there are some classes with similar object shapes
and distribution, e.g., dense residential, medium residential, and sparse residential. The difference
between these classes is mostly in object density.
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Figure 7. Image classes in WHU-RS dataset: (a) airport; (b) beach; (c) bridge; (d) commercial; (e) 

desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) mountain; (l) park; (m) 
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For all experiments described below, we used moderate data augmentation on the training set, 

creating five patches from a single image, by applying translations, rotations, changes in scale, 
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Figure 6. Image classes in UC-Merced dataset: (a) agriculture; (b) airplane; (c) baseball diamond;
(d) beach; (e) buildings; (f) chaparral; (g) dense residential; (h) forest; (i) freeway; (j) golf course;
(k) harbor; (l) intersection; (m) medium residential; (n) mobile home park; (o) overpass; (p) parking lot;
(q) river; (r) runway; (s) sparse residential; (t) storage tanks; and (u) tennis court.

2.8.2. WHU-RS Dataset

The WHU-RS dataset [41] is collected from Google Earth imagery. There are 1005 images assigned
to 19 classes. The images are of high spatial resolution, having 600 × 600 pixels. At least 50 images
represent each class. Sample images of each class are presented in Figure 7. The images in this dataset
represent aerial scenes from different places all over the Earth. So far, the WHU-RS dataset has been
used extensively in research studies of different aerial scene classification methods.
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Figure 7. Image classes in WHU-RS dataset: (a) airport; (b) beach; (c) bridge; (d) commercial; (e) desert;
(f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) mountain; (l) park; (m) parking;
(n) pond; (o) port; (p) railway station; (q) residential; (r) river; and (s) viaduct.

2.9. Experimental Setup

For all experiments described below, we used moderate data augmentation on the training set,
creating five patches from a single image, by applying translations, rotations, changes in scale, shearing,
and horizontal and vertical flips of the images of remote sensing dataset. Aggressive data augmentation
can produce even more patches from the original image.

We conducted our simulations in two directions. First, we extracted features from three separate
layers of each of the CNNs: ResNet50, InceptionV3, Xception, and DenseNet121. The CNNs were
pre-trained, and the parameters of the original deep architectures were kept. In the ResNet50,
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the following layers were used: average pooling layer, the last convolutional layer before the average,
and bn4f_branch2c layer. In the InceptionV3, the following layers were used: average pooling
layer, mixed_10 layer, and mixed_8 layer. In the Xception, the following layers were used: average
pooling layer, block14_sepconv2_act, and block14_sepconv1_act layer. Finally, for the DenseNet121,
the following layers were used: average pooling layer, the last convolutional layer before the average,
and conv4_block24_concat. The input image size for ResNet50 and the DenseNet121 was 224 × 224,
and the input image size for InceptionV3 and the Xception was 229 × 299. The feature extraction was
performed for two datasets: the UC-Merced and WHU-RS dataset. Training/test dataset ratio was 80%
vs. 20% for the UC-Merced dataset, and 60% vs. 40% for the WHU-RS dataset. The picked out split
ratios are the same as the ones chosen in the related work we compare our approaches to. The splits are
random. There was no stratification used. We did not want to stratify train/test data splits to provide
a completely random process. Controlled data splits (with an equal number of each image class in
every train/ test split) may influence the classification accuracy and lead to the higher mean value and
lower standard deviation of the results. Still, the purpose was not to avoid the worst classification
results. Every input image was pre-processed according to the requirements of the appropriate CNN.
Moderate data augmentation was used on the training set (image data generator produced five patches
per image): images were rotated, shifted, sheared, zoomed, and horizontally flipped. After the features
were extracted, a linear classifier was trained (LRC or SVM). We performed a grid search in order to
tune model hyperparameters (regularization parameter C). This first part of the survey was conducted
with the sole aim of gaining insight into which CNN layer leads to the best classification results. Here,
it is essential to mention that the average pooling layer or the last convolutional layer does not always
give the best classification results. In some of the networks, the best results were obtained using the
inner (intermediate) convolutional layer.

The second part of our survey study was conveyed for boosting the classification performance
using feature fusion. This time, the features were extracted from two different layers of two different
CNNs, in a way that one layer was always the average pooling layer, and the other was the convolutional
layer (the last one or an intermediate convolutional layer). The combinations of layers and networks
were determined from the results obtained in the first part of the simulations. Here, the images were
also appropriately resized, pre-processed, and moderate data augmentation was again applied to the
training set: images were rotated, shifted, sheared, zoomed, and horizontally flipped. Training/ test
dataset ratio was 80%/20% and 50%/50% for the UC-Merced dataset, and 60%/40% and 40%/60% for
the WHU-RS dataset. The splits are random and without stratification again. Before the feature fusion
(concatenation), the PCA transformation is performed on features extracted from the convolutional
layer. Next, the L2 normalization is done on the features extracted from the average pooling layer, and
PCA transformed features, and, finally, the features are fused. SVM is used for the classification task.
The classification results obtained with this method are comparable to state-of-the-art methods based
on feature extraction.

All simulations were performed on OS Ubuntu 18.04 with Keras v2.2.4. Google’s library
TensorFlow v1.12.0 [53], was backend to Keras. The hardware setup was: CPU i7-8700 3.2 GHz and
64 GB RAM. The graphical processor unit was Nvidia GeForce GTX 1080 Ti, with 11 GB of memory
and CUDA v9.0 installed on it.

2.10. Evaluation Metrics

In this article, we use two evaluation metrics: Overall Accuracy OA (equivalent to classification
accuracy) and a confusion matrix. These two types of metrics are usual for analysis of results and
comparison with similar cutting-edge methods in classification tasks articles. The classification accuracy
is the ratio between the number of adequately classified test images (from all image classes) and the total
number of test images. The value of this metric is less than 1. Despite overall accuracy, the classification
accuracy on each separate image class is presented in a confusion matrix. The confusion matrix is a
graphical display (table) of the classification accuracy on each class of the dataset. This table clearly
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shows the errors of each separate class and confusion between different classes. In a confusion matrix,
the columns represent the predicted classes, and the rows represent real classes. In a normalized
confusion matrix, the item xij is the percentage of images that are classified as they belonged to the
i-th class, but their real class is j-th [54]. Ideally, an accurate prediction model leads to a diagonal
confusion matrix, or with high values on the diagonal and shallow values in other entries. In our
experimental setup, the dataset was divided into training and testing sets. The division was random,
without stratification, and it was made according to the scales listed in the previous section. To check
the reliability of the results, all cases where the biggest OA is obtained are repeated ten times. After that,
the mean value and the standard deviation (SD) from each experiment are calculated.

3. Results

3.1. Classification Founded on Extracted Features from Different CNN Layers

As mentioned in the experimental setup, the first part of the simulations is devoted to classification
based on features extracted solely from one network layer. The obtained results are displayed in Table 1,
with 80% of UC-Merced dataset used as a training set, and in Table 2 for the WHU-RS dataset under
the training ratio of 60%. The remaining instances were used in the test set, and no instances were left
out of the analysis. Experiments were extensive across all four pre-trained CNNs, and three different
layers in each of them. Extracted features were fed to two different linear classifiers: LRC and SVM.

As it is known, the average pooling layer is a replacement for the fully connected layers in
the architecture of a CNN. Therefore we expected that the features extracted from that layer would
lead to the highest classification accuracies. On the other hand, convolutional layers, especially the
intermediate ones, give features which represent mid-level information (e.g., object parts), but not the
spatial dependencies between them (e.g., the whole object), and the classification accuracies should
deteriorate compared to the features extracted from average pooling layers.

However, if we carefully analyze Tables 1 and 2, we can conclude for both datasets, as well as for
both linear classifiers, that the best accuracies for each of the pre-trained CNNs, except for ResNet50,
are obtained with features extracted from the intermediate convolutional layer. That is the mixed_8
layer for the InceptionV3, block14_sepconv1_act layer for the Xception, and conv4_block24_concat
layer for the DenseNet121. These results gave us directions for the second part of our experiments.
Namely, we extracted features from convolutional layers of interest, then PCA transformed them and
fused them with features extracted from the average pooling layer of different CNN. With this method,
we aimed to boost the classification accuracy on the UC-Merced and the WHU-RS dataset.

Table 1. The classification accuracy (OA (%)) of linear classification with a Logistic Regression Classifier
(LRC) and a Support Vector Machine (SVM), using features extracted from different layers with 80% of
UC-Merced dataset as a training set.

Method LRC SVM
ResNet50

avg pooling 96.19 95.71
last conv layer 95.71 97.38
bn4f_branch2c 94.52 93.57
InceptionV3
avg pooling 96.67 95

mixed_10 95.48 95.71
mixed_8 98.10 98.33
Xception

avg pooling 93.57 94.76
block14_sepconv2_act 93.81 94.29
block14_sepconv1_act 96.43 95.71

DenseNet121
avg pooling 95.48 93.81

conv5_block16_concat 96.67 94.05
conv4_block24_concat 97.14 95.24
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Table 2. The classification accuracy (OA (%)) of linear classification with LRC and SVM of features
extracted from different layers with 60% of WHU-RS dataset as a training set.

Method LRC SVM
ResNet50

avg pooling 98.01 97.01
last conv layer 98.01 97.76
bn4f_branch2c 95.52 96.02
InceptionV3
avg pooling 95.78 95.02

mixed_10 94.53 95.52
mixed_8 97.26 97.26
Xception

avg pooling 93.28 93.53
block14_sepconv2_act 94.28 94.53
block14_sepconv1_act 95.27 95.52

DenseNet121
avg pooling 96.52 95.27

conv5_block16_concat 96.27 95.52
conv4_block24_concat 96.27 96.27

3.2. Classification Based on Features Fusion with PCA Transformation

The second part of the simulations presents the capacity of the evaluated method: the linear
classification of features fused from average pooling layer and PCA transformed features from some of
the convolutional layers. In the PCA decomposition, we used 2010 components, which provided a good
balance between performance and dimensionality reduction. For the Linear SVM, we used a grid search
approach [55] to select the value for C from the set of values: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,
10,000, and 100,000. The maximum iterations were 5000, using 3-fold standard cross-validation using
the training subset. The default SVM parameters were significantly worse without the grid search.

The research was done for different combinations of layers, and the SVM as a linear classifier
for the UC-Merced dataset, and is presented in Table 3. To evaluate the classification accuracy of the
examined technique, we compared it to the achieved classification accuracy of a couple of similar
cutting-edge classification techniques on the UC Merced Land-Use dataset. The performance of
different techniques is shown in Table 4, which is a common way of reporting results using these
methods, as in [56]. As Table 4 shows, the proposed method for feature fusion with PCA transformation
gives a classification accuracy comparable to the competitive methods. Methods that outperform our
architecture can be found: the integration of a global context features and features concerning local
objects GCFs+LOFs [57] and Inception-v3-CapsNet [54]. In order to check the reliability of the results,
all cases where the largest OA is obtained are repeated ten times, and the mean and standard deviation
on the testing sets are calculated, as shown in Table 5. It has to be noted that the averaged accuracies
are somewhat lower than the ones shown in Table 4.

Table 3. The classification accuracy (OA (%)) of the linear classification of fused features with Principal
Component Analysis (PCA) transformation, with 80% and 50% of UC-Merced dataset as a training set.

Method 80% of UCM Dataset as
a Training Set

50% of UCM Dataset as
a Training Set

ResNet50 last conv layer (PCA) + InceptionV3 avg pooling 97.14 97.33
ResNet50 last conv layer (PCA) + Xception avg pooling 97.62 97.43

DenseNet121 conv5_block16_concat (PCA) + Xception avg pooling 97.86 96.67
DenseNet121 conv4_block24_concat (PCA) + Xception avg pooling 97.86 96.57

InceptionV3 mixed_10 (PCA) + ResNet50 avg pooling 97.62 96.57
InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling 98.33 97.43
InceptionV3 mixed_10 (PCA) + Xception avg pooling 95.95 95.14
InceptionV3 mixed_8 (PCA) + Xception avg pooling 98.57 97.62

DenseNet121 conv5_block16_concat (PCA) + ResNet50 avg pooling 97.14 96.67
DenseNet121 conv4_block24_concat (PCA) + ResNet50 avg pooling 96.9 95.24
Xception block14_sepconv2_act (PCA) + DenseNet121 avg pooling 96.67 96.48
Xception block14_sepconv1_act (PCA) + DenseNet121 avg pooling 98.57 96.29
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Table 4. The classification accuracy (OA (%) and SD) of the examined method and the reference
methods, with 80% and 50% of UC-Merced dataset as a training set.

Method 80% of UCM Dataset as a
Training Set

50% of UCM Dataset as a
Training Set

CaffeNet [44] 95.02 ± 0.81 93.98 ± 0.67
GoogLeNet [44] 94.31 ± 0.89 92.70 ± 0.60

VGG-16 [44] 95.21 ± 1.20 94.14 ± 0.69
SRSCNN [58] 95.57 /

CNN-ELM [59] 95.62 /

salM3LBP-CLM [60] 95.75 ± 0.80 94.21 ± 0.75
TEX-Net-LF [61] 96.62 ± 0.49 95.89 ± 0.37
LGFBOVW [62] 96.88 ± 1.32 /

Fine-tuned GoogLeNet [63] 97.10 /
Fusion by addition [64] 97.42 ± 1.79 /

CCP-net [65] 97.52 ± 0.97 /
Two-stream Fusion [50] 98.02 ± 1.03 96.97 ± 0.75

DSFATN [66] 98.25 /
Deep CNN Transfer [37] 98.49 /

InceptionV3 mixed_8 (PCA) + Xception avg pooling (Ours) 98.57 97.62
GCFs+LOFs [57] 99 ± 0.35 97.37 ± 0.44

Inception-v3-CapsNet [54] 99.05 ± 0.24 97.59 ± 0.16

Table 5. The overall accuracy (%) and standard deviation of the examined method, with 80% and 50%
of the UC-Merced dataset as a training set.

Method 80% of UCM Dataset as a
Training Set

50% of UCM Dataset as a
Training Set

InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling 97.67 ± 0.64 97.00 ± 0.65
InceptionV3 mixed_8 (PCA) + Xception avg pooling 97.86 ± 0.59 96.6 ± 0.65

Figure 8 displays the confusion matrix plotted in the case of the best classification accuracy
obtained by the InceptionV3 mixed_8 (PCA) + Xception average pooling layer with 50% of the
UC-Merced dataset as a training set. The confusion matrix shows that the worst classified categories
are ‘dense residential’ and ‘medium residential.’ Those two classes are easily confused with each
other. This comes from the fact that the ‘dense residential’ and ‘medium residential’ classes have
similar image structures, for example, the building shapes and distribution, and it is difficult to
differentiate them from each other, which can be seen in Figure 9. However, it is noticeable that ‘dense
residential’, as well as ‘medium residential’, achieved an accuracy of 88%. This accuracy outperformed
the GCFs+LOFs [57], with a ‘dense residential’ accuracy of 74%, and the Inception-v3-CapsNet [54],
with a ‘dense residential’ accuracy of 80%. These two methods are the best ones ranked in Table 4.

Figure 10 displays the confusion matrix plotted for the achieved classification accuracy by the
InceptionV3 mixed_8 (PCA) + ResNet50 average pooling with 50% of the UC-Merced dataset as a
training set.

The second part of the research was repeated for the WHU-RS dataset as well: the linear
classification of features fused from average pooling layer(s) and PCA transformed features from
some of the convolutional layers. The classification accuracy of different combinations of layers,
and the SVM as a linear classifier, is presented in Table 6. To evaluate the classification accuracy
of the examined technique, we compared it to the achieved classification accuracy of a couple of
state-of-the-art classification methods on the WHU-RS dataset, as displayed in Table 7. As it is depicted
in Table 7, the examined architecture for feature fusion with PCA transformation gives a classification
accuracy comparable to the state-of-the-art methods. It can be noted that our proposed method for
a training ratio of 40% outperforms all the other cutting-edge classification methods. To check the
reliability of results, all cases where the largest OA is obtained are repeated ten times on testing sets.
Afterward, we calculated the mean value and standard deviation on the achieved results, as shown in
Table 8.
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Table 6. The classification accuracy (OA (%)) of the linear classification of fused features with PCA
transformation, with 60% and 40% of WHU-RS dataset as a training set.

Method 60% of WHU-RS
Dataset as a Training Set

40% of WHU-RS
Dataset as a Training Set

ResNet50 last conv layer (PCA) + InceptionV3 avg pooling 98.26 95.02
ResNet50 last conv layer (PCA) + Xception avg pooling 97.62 96.52

DenseNet121 conv5_block16_concat (PCA) + Xception avg pooling 97.01 95.69
DenseNet121 conv4_block24_concat (PCA) + Xception avg pooling 97.76 96.68

InceptionV3 mixed_10 (PCA) + ResNet50 avg pooling 96.27 95.85
InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling 98.01 98.67
InceptionV3 mixed_10 (PCA) + Xception avg pooling 96.77 96.02
InceptionV3 mixed_8 (PCA) + Xception avg pooling 98.01 96.35

DenseNet121 conv5_block16_concat (PCA) + ResNet50 avg pooling 98.76 98.34
DenseNet121 conv4_block24_concat (PCA) + ResNet50 avg pooling 96.77 96.52
Xception block14_sepconv2_act (PCA) + DenseNet121 avg pooling 97.51 96.35
Xception block14_sepconv1_act (PCA) + DenseNet121 avg pooling 97.76 96.52

DenseNet121 conv5_block16_concat (PCA) + InceptionV3 avg pooling 96.27 97.51
DenseNet121 conv4_block24_concat (PCA) + InceptionV3 avg pooling 98.01 97.18
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Table 7. The classification accuracy (OA (%) and SD) of the examined method and the reference
methods, with 60% and 40% of WHU-RS dataset as a training set.

Method 60% of WHU-RS Dataset as a
Training Set

40% of WHU-RS Dataset as a
Training Set

Bag of SIFT [29] 85.52 ± 1.23 /
MS-CLBP + BoVW [67] 89.29 ± 1.30 /

GoogLeNet [44] 94.71 ± 1.33 93.12 ± 0.82
VGG-VD-16 [44] 96.05 ± 0.91 95.44 ± 0.60

CaffeNet [44] 96.24 ± 0.56 95.11 ± 1.20
salM3LBP-CLM [60] 96.38 ± 0.82 95.35 ± 0.76

TEX-Net-LF 61] 96.62 ± 0.49 95.89 ± 0.37
InceptionV3 mixed_8 (PCA) + ResNet50

avg pooling (Ours) 98.13 ± 0.51 /

DCA by addition [64] 98.70 ± 0.22 97.61 ± 0.36
Fusion with saliency detection [50] 98.92 ± 0.52 98.23 ± 0.56

DenseNet121 conv5_block16_concat
(PCA) + ResNet50 avg pooling (Ours) / 98.26 ± 0.40

Table 8. The classification accuracy (OA (%) and SD) of the examined method, with 60% and 40% of
the WHU-RS dataset as a training set.

Method 60% of WHU-RS Dataset as a
Training Set

40% of WHU-RS Dataset as a
Training Set

InceptionV3 mixed_8 (PCA) +
ResNet50 avg pooling 98.13 ± 0.51 97.84 ± 0.53

DenseNet121
conv5_block16_concat (PCA) +

ResNet50 avg pooling
98.01 ± 0.68 98.26 ± 0.40

Figures 11 and 12 show the confusion matrices generated from the classification result by the
InceptionV3 mixed_8 (PCA) + ResNet50 average pooling with the training ratio of 60%, and by
DenseNet121 conv5_block16_concat (PCA) + ResNet50 average pooling, for a training ratio of 40%.Sensors 2020, 20, x FOR PEER REVIEW 19 of 25 
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4. Discussion

We are aware that there a lot of powerful techniques for remote sensing datasets classification,
which can achieve astonishing accuracies. The aim of our research was not to outperform every one of
them. The purpose of this article is to contribute in the directions that were not researched intensively,
for example the specific types of pre-trained CNNs as feature extractors. From the finished simulations
and obtain results, the following valuable concepts can be summarized:

• Despite many research studies and theories that fully connected layers (average pooling layers)
give features that achieve the biggest classification accuracies, this study suggests the opposite.
In remote sensing dataset classification through transfer learning with feature extraction, the biggest
accuracies are achieved by features extracted from the intermediate convolutional layers. It is a
result of the fact that CNNs used for feature extraction are originally trained on quite different
datasets, and that the features of the average pooling layers are connected with the semantic
meaning of the images. On the other hand, features extracted from the intermediate convolutional
layers represent some basic image elements like lines, edges, colors, shadows, etc., and are common
for a variety of datasets. Special attention should be dedicated to the mixed_8 convolutional layer
of InceptionV3 pre-trained CNN.

• The classification of aerial scenes conducted with two linear classifiers: LRC and SVM gave similar
results and thus confirmed our conclusions. When features were extracted solely from one layer
(regardless of whether it was extracted from an average pooling layer or some of the convolutional
layers), the trends of increasing or decreasing the classification accuracies were the same with
any of the classifiers. For all pre-trained CNNs, except for ResNet50, the accuracies increased
by moving to intermediate layers. It is a challenging task to move further to lower layers and to
compare the classification accuracies.

• The proposed method for remote sensing image datasets classification, based on a fusion of
features with PCA transformation, leads to accuracies which are comparable to the state-of-the-art
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methods. However, even though there are methods attaining higher classification accuracies on
the UC-Merced dataset, the classification accuracy attained on the class “dense residential” (the
most demanding one) is higher, compared to the other classification methods presented in the
literature. Namely, our method achieved an accuracy of 0.88 under the training ratio of 50% on
the UC-Merced dataset, compared to the GCFs +LOFs with a “dense residential” accuracy of 0.74
and the Inception-v3-CapsNet with “dense residential” accuracy of 0.8. This can find its usage
when it is about the classification of datasets with image classes with big inter-class similarities
(image classes which are easy to confuse with each other).

• Our method of feature fusion with PCA transformation is competitive to the cutting-edge methods.
However, it should be noted that it performs better under a smaller percentage of the training set.
Under the training ratio of 40% on the WHU-RS dataset, it gives the classification accuracy of
98.26 ± 0.40, which outperforms other methods in the literature. This can be useful in situations
when there is no possibility for time-excessive training of the classifiers, and the acceptable
classification accuracy can be achieved with a smaller ratio of the training set. Time-excessive
training is never a good idea, especially when there is a need for repetitive experiments.

• In our simulations, moderate data augmentation on the training set is used, which certainly helped
to achieve good classification results. Data augmentation can be more aggressive, and can produce
more patches from the original image (here, data augmentation gave five patches from a single
image). It can be done by translations, rotations, changes in scale, shearing, and horizontal and
vertical flips of the images of remote sensing dataset. This can lead to improving the classification
accuracy, as the result of the larger amount of data to train the linear classifiers, which can be even
more competitive.

• In the performed experiments, the dataset split is completely random; in other words,
no stratification is used. A stratified data split may lead to bigger classification accuracies,
because image classes which are more difficult to differentiate are represented equally with all the
other classes. This choice is made on purpose (the process should be random), even it brings a
lower mean value and a bigger standard deviation.

The above observations give us valuable information and directions for researching more
competitive methods on bigger and more complex datasets to provide the progress in remote sensing
image classification.

As an alternative, we attempted to use the features extracted from the deep learning models,
and then perform traditional feature selection and classification with other ensemble-based algorithms,
such as Random Forest, XGBoost, Adaboost, or Extremely Randomized Trees. However, all datasets
exported after the feature extraction were about 550 GB, so we were not able to effectively perform
feature extraction based on ranking or correlation. Wrapper and hybrid methods were even less
suitable, because of their complexity. Be that as it may, we believe that such analysis is worthwhile,
and could be valuable for improving the classification performance.

5. Conclusions

In our paper, the two-stream concatenation method for the classification of remote sensing
high-resolution images was used. In our experiments, at first, CNNs pre-trained on ImageNet dataset
were used to extract features from the original aerial image from different layers of neural networks’
architecture. After the extraction, the features extracted from the average pooling layer and the PCA
transformed features from a convolutional layer were concatenated, to form a unique representation of
features. In the end, we used the SVM classifier for the classification of the final set of features. We tested
our architecture on two datasets. In comparison with other state-of-the-art methods, our architecture
achieved comparable results. The proposed method can be relevant when there is a need to perform
training of a classifier with a small ratio on the training dataset. Additionally, this technique might be
a good solution for the classification of datasets with image classes with big inter-class similarities,
like “dense residential” of the UC-Merced dataset.
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The proposed technique for remote sensing image classification can be further explored with
extracting features from lower layers of pre-trained deep CNN. In addition to this, stratification can
also have an impact on the classification accuracy of the researched technique. So, to boost the accuracy
and to come closer to the best classification practices, the spilt of the training/testing dataset should be
stratified. All gathered knowledge and experience could be checked on other remote sensing datasets,
not necessarily publicly available, preferably small scale, because the proposed classification method
gives good results with a small portion of the training set.
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