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a b s t r a c t 

Gravitational waves represent a new opportunity to study and interpret phenomena from the universe. 

In order to efficiently detect and analyze them, advanced and automatic signal processing and machine 

learning techniques could help to support standard tools and techniques. Another challenge relates to 

the large volume of data collected by the detectors on a daily basis, which creates a gap between the 

amount of data generated and effectively analyzed. In this paper, we propose two approaches involving 

deep auto-encoder models to analyze time series collected from Gravitational Waves detectors and pro- 

vide a classification label (noise or real signal). The purpose is to discard noisy time series accurately 

and identify time series that potentially contain a real phenomenon. Experiments carried out on three 

datasets show that the proposed approaches implemented using the Apache Spark framework, represent 

a valuable machine learning tool for astrophysical analysis, offering competitive accuracy and scalability 

performances with respect to state-of-the-art methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In September 2015, Gravitational Waves (GWs) were observed

or the first time in the universe, following to Albert Einstein’s in-

uition dated a hundred years ago, and described in his general

heory of relativity. 

During the first observation run (O1) of Advanced Laser Inter-

erometer Gravitational-Wave Observatory (LIGO), which took place

rom September 2015 to January 2016, the first detections of GWs

rom stellar-mass binary black holes (BBHs) took place, as docu-

ented by Abbott et al. (2016c) , Abbott, Jawahar, Lockerbie, and

okmakov (2016a) , and Abbott et al. (2016b) . The second observa-

ion run (O2) started in November 2016, and ended in August 2017,

hen the first binary neutron star inspiral was observed by Abbott

t al. (2016d) and Abbott et al. (2018) . 

GWs are the manifestation of disruptions in spacetime caused

y accelerating masses, and they represent a totally new opportu-

ity to study and interpret phenomena from the universe. 
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For this reason, GWs are attracting increasing interest in the

elds of astrophysics. The adoption of automatic signal process-

ng and machine learning techniques could be beneficial for their

etection and analysis, and reduce the effort and the cost of stan-

ard approaches such as template matching. Such techiniques have

een investigated by George and Huerta (2018) , Zevin et al. (2017) ,

nd Bahaadini et al. (2018a) . However, these two tasks (detection

nd analysis) pose several challenges and require specific exper-

ise, since the data collected by detectors (interferometers) are

n the form of time series affected by the presence of environ-

ental and instrumental noise. Fig. 1 (left) shows that the strain

ime series representing real GWs immersed in noise are impos-

ible to distinguish, even for the human eye, without data pre-

rocessing. Fig. 1 (right) instead, shows the whitened time series

epresentation of the same GWs signal presented in Fig. 1 (left)

ID GW151226). 

This implies that, for instance, in order to effectively per-

orm manual filtering, knowledge about the underlying type of

oise present in data is required, as well as which frequencies

ould be relevant (or irrelevant) for the detection of a GW. Ad-

itional knowledge is required to perform other recurrent tasks,

uch as spectrogram analysis, filtering, and whitening, as outlined

y Cuoco et al. (2001a) and Cuoco et al. (2001b) . Moreover, even

https://doi.org/10.1016/j.eswa.2020.113378
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113378&domain=pdf
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Fig. 1. (left) Example of a time series containing a GWs signal immersed in LIGO noise (ID GW151226). Since data are dominated by noise, it is not possible to see the signal 

without some signal processing. (right) Whitened time series containing a GWs signal (ID GW151226) and the best matching template identified in the LIGO search pipeline. 
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1 Glitches are transient and non-Gaussian disturbances that mimic GWs morphol- 

ogy. 
though a large volume of data, in terms of petabytes per day,

are collected by detectors, there is a consistent gap between the

amount of data generated and adequately analyzed. This volume

requires new automatic and scalable methods, which are capable

of analyzing data in a timely manner, performing pre-processing

and detection tasks that were typically executed manually. 

In this paper, we address the challenges related to the GWs de-

tection process from a machine learning perspective. More specif-

ically, we propose two approaches involving deep auto-encoder

models to analyze time series collected from detectors and pro-

vide a classification label (noise or real signal). The purpose is to

discard noisy time series accurately, and identify potentially inter-

esting time series that could be manually inspected. 

The paper is structured as follows. In Section 2 , we provide an

overview of related machine learning approaches for GWs detec-

tion and anomaly detection. In Section 3 , we present our proposed

method. In Section 4 we describe the datasets and the experimen-

tal results obtained in our study. Finally, Section 5 concludes the

paper. 

2. Related works 

The roots of this work are in astrophysical data analysis and

in classification and anomaly detection of time series data. In the

following, we discuss the related work in both research topics. 

2.1. Astrophysical data analysis 

In astrophysical data analysis, one of the most difficult chal-

lenges is to work with data in the form of time series charac-

terized by high levels of noise. Time-frequency representation of

the data is one of the techniques used for detector characteriza-

tion purposes and can represent the same information in a differ-

ent domain (see Fig. 2 ). Data whitening, addressed by Cuoco et al.

(2001a) and Cuoco et al. (2001b) , is a typical step in astrophysical

data analysis for detection and parameter estimation. 

There are techniques which implement the whitening in time

domain, as done by Cuoco et al. (2001a) , or in frequency domain,

as explained by Biwer et al. (2019) . In frequency domain we can

whiten the data by dividing each point by the noise amplitude

spectrum in the Fourier domain. The purpose of the whitening

procedure it to remove all the stationary noise, in order to pos-

sibly reveal weak signals hidden in other bands (see Fig. 2 right).

One additional step is removing high-frequency noise by applying

a bandpass filter to the data. In Fig. 2 , a Butterworth bandpass fil-

ter has been applied to filter signal frequencies below 43Hz and

above 300Hz. More details about typical signal processing tech-

niques involved in gravitational waves analysis can be found in a

study conducted by Allen and Romano (1999) . 

Data analysis for GWs requires to perform different tasks, such

as noise removal, anomaly detection, and classification, which can
ll be performed applying machine learning techniques. In the re-

ainder of the paper, we mainly discuss approaches that solve the

lassification task, which is the main objective of the present study.

In the GW literature, classification algorithms are either used to

istinguish real signal from noise or to identify glitches 1 . In both

ases, we can distinguish methods that work on spectrogram data

images) and methods that work directly on time series data. 

Focusing on methods that work on spectrogram data, one of the

asks addressed in Gravity Spy by Zevin et al. (2017) and Bahaadini

t al. (2018a) was to accurately classify glitches using convolu-

ional neural networks, in order to subsequently avoid false posi-

ive gravitational wave detections. Supervised convolutional neural

etworks for glitch classification were also addressed by Razzano

nd Cuoco (2018) and Gabbard, Williams, Hayes, and Messenger

2018a) . In their approaches, the network is trained via transfer

earning, and used as a feature extractor for unsupervised clus-

ering methods to discover new classes of glitches based on their

orphology. A multi-view deep convolutional neural network for

litch classification was proposed by Bahaadini et al. (2017) . The

odel exploits four different time durations available for each

litch, from 0.5 to 4 seconds. Bahaadini et al. (2018b) focused on

earning discriminative embedding functions for feature extraction.

he task is domain adaptation, using a labeled set of glitch classes

s a source domain and a pool of unlabeled glitch samples as a

arget domain (glitch classes). 

The proposed methods are capable of obtaining nearly per-

ect classification accuracy, although data are represented in the

orm of cleaned spectrograms, that is, images in which glitches are

learly visible, thanks to manual operations such as filtering for

pectral lines removal, whitening, and so forth. In Fig. 2 , the left

art shows a raw spectrogram, while the right part shows a GW

merging after bandpass filtering and whitening operations. In this

gure, it looks clear that, with no such pre-processing, any phe-

omenon is not clearly visible in the raw data representation. 

However, assuming that human-intensive pre-processing oper-

tions are always feasible is a simplistic assumption, since detec-

ors continuously collect data in the form of strain time series that

nclude noise, and a classification is required in real-time. In this

aper, we address the problem of working directly on strain data,

nd we assess model performance in different conditions. 

Shifting the focus to methods that work on time series data,

oise classification approaches were proposed by Powell et al.

2017) and Mukherjee, Obaid, and Matkarimov (2010) , who applied

eature extraction techniques to data. In particular, principal com-

onent analysis and wavelet transform were considered to extract

oefficients that are used as features to train a machine learning

lassifier. Convolutional neural networks for detection and param-

ter estimation were proposed by George and Huerta (2018) and
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Fig. 2. A raw spectrogram representation of the event GW150914 (top) and its whitened version (bottom). In the whitened version it is possible to clearly identify the 

gravitational wave corresponding to the event BBH (binary black hole mergers). These representations are extracted following the LOSC event tutorial (see https://www. 

gw-openscience.org/s/events/GW150914/LOSC _ Event _ tutorial _ GW150914.html ). 
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abbard, Williams, Hayes, and Messenger (2018b) , who performed

xperiments on datasets of waveform templates revealed that the

roposed model is capable of obtaining similar performances com-

ared to matched-filtering while being far more computationally

fficient. A fully convolutional neural network architecture with

ilated kernels that works directly on time series strain data to

dentify simulated GWs signals was proposed by Gebhard, Kil-

ertus, Parascandolo, Harry, and Schölkopf (2017) . A different ap-

roach was proposed by Shen, George, Huerta, and Zhao (2017) ,

here a denoising auto-encoder based on sequence-to-sequence

i-directional Long-Short-Term-Memory recurrent neural networks 

s investigated. This work shows the superior effectiveness of auto-

ncoders trained on Gaussian noise, to extract cleaned GW signals

rom noisy time series collected on a single LIGO detector. 

.2. Classification and anomaly detection from time series data 

Methods for time series classification can be divided into three

ain categories according to Xing, Pei, and Keogh (2010) : feature-

ased, distance-based and model-based. Feature-based methods

ransform time series into a feature vector which can be pro-

essed by conventional classification methods, such as decision
rees, neural networks or Support Vector Machines. Bagnall, Lines,

ostrom, Large, and Keogh (2017) performed an extensive experi-

ental study with methods in this category on a large number of

atasets, showing that ensemble methods, such as Random Forest,

btain the best overall performance. 

Distance-based methods work by defining a distance function to

easure the similarity between a pair of time series and exploit

uch a distance function for classification. The k -Nearest Neigh-

or classifier (kNN) falls into this category. Finally, model-based

ethods adopt generative models, such as Naive Bayes or Hidden

arkov Models (HMM), which assume that such underlying mod-

ls generate the time series of a class. 

Supervised time series classification methods are suitable when

he available data consists of fully labeled training and test data

ets. Common approaches in the literature for this task are based

n neural networks and support vector machines, as outlined by

oldstein and Uchida (2016) . 

Unlike them, unsupervised methods present a great poten-

ial in many real-world domains and tasks in which data la-

els are not available. This problem is particularly important in

he context of data streams since the classification is required in

he same moment data are received. In particular, the study by

https://www.gw-openscience.org/s/events/GW150914/LOSC_Event_tutorial_GW150914.html
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Japkowicz (2001) demonstrated that when the data analyzed be-

longs to two classes, the binary classification task can be reformu-

lated as an unsupervised anomaly detection task. In this case, the

purpose is to discriminate among two classes by analyzing data

over time and detecting if the current behavior is as expected (nor-

mal) or it deviates from the expected distribution (anomaly). 

In the anomaly detection task, Chandola, Banerjee, and Kumar

(2009) classified anomalies in three general classes: point, con-

textual, and collective anomalies. This paper focuses on collective

anomalies, that is, a collection of data points with respect to the

entire time series analyzed, that are anomalies. The conceptualiza-

tion of anomaly is clearly related to the specific task and problem

addressed, and is related to its data structure. 

In this context, different studies in recent literature, conducted

by Najafabadi et al. (2015) , Zhou and Paffenroth (2017) , Principi,

Rossetti, Squartini, and Piazza (2019) , Chen et al. (2019) , and

Corizzo, Ceci, and Japkowicz (2019) demonstrated the high per-

formance of auto-encoders. The success of auto-encoders is also

theoretically motivated by their inherent ability to learn represen-

tations with a low reconstruction error, by means of non-linear

combinations of input characteristics, as explained by Bengio et al.

(2009) . 

2.3. Contribution 

The reconstruction-based modeling capabilities of auto-

encoders and their recognized potential in solving tasks such

as data denoising, as shown by Shen et al. (2017) , anomaly de-

tection, as shown by An and Cho (2015) ; Corizzo et al. (2019) ;

Khan and Taati (2017) ; Principi et al. (2019) ; Zhou and Paffenroth

(2017) and feature extraction, as shown by Corizzo et al. (2019) ;

Masci, Meier, Cire ̧s an, and Schmidhuber (2011) with time series

data, make them valid candidates for the analysis of astrophysical

data, collected in the form of time series characterized by high

levels of noise. 

Following this analysis, our paper proposes two approaches

(one unsupervised and one supervised) involving auto-encoder

models in combination with classification models. Our aim is to

analyze time series and classify them as noise or real signals (e.g.,

glitches). 

The main reason that led us to prefer classification over a de-

noising approach is that, in this way, we can perform automatic

analysis of data continuously observed in form of time series, and

enable astro physicians and data scientists to focus only on poten-

tially interesting time series and further process only them with

already established methods. On the other hand, a denoising ap-

proach would still require manual intervention in order to filter

out time series related to empty signals, and maintain time series

that contain significant signals. 

More specifically, the machine learning approaches for GWs de-

tection we propose are able to: i) detect GWs automatically, di-

rectly from time series data; ii) recognize as many noise types

as possible, being robust to unseen data from different distribu-

tions; iii) efficiently scale as the volume of data increases, with a

distributed implementation that exploits the Apache Spark frame-

work. 

Differently from the approaches by Zevin et al. (2017) ,

Bahaadini et al. (2018a) , Razzano and Cuoco (2018) , Gabbard et al.

(2018a) , Bahaadini et al. (2017) and Bahaadini et al. (2018b) de-

scribed above, our approaches do not require any pre-processing

step, such as the generation of spectrograms, filtering and whiten-

ing, to be performed on data collected by detectors. 

From a model perspective, approaches based on auto-encoders

were proposed by Shen et al. (2017) , but applied for the de-

noising task. Focusing on the classification task, the most sim-

ilar works with respect to our proposal are those proposed by
eorge and Huerta (2018) and Gebhard et al. (2017) . However, the

ocus in the work by George and Huerta (2018) and Gebhard et al.

2017) is on a supervised approach based on convolutional neu-

al networks, whereas in this paper we propose two different ap-

roaches (unsupervised and supervised) for GWs detection based

n auto-encoder neural networks, and we compare their perfor-

ances, also with convolutional neural networks. 

Another significant difference with respect to the study carried

ut by Gebhard et al. (2017) is that we do not analyze simulated

aveforms, but real annotated GWs events, whereas Gebhard et al.

2017) simulated waveforms are injected in time series recorded

rom Hanford and Livingstone detectors 

Finally, to the best of our knowledge, this is the first paper that

roposes auto-encoders for GWs classification on time series data.

oreover, on the contrary of existing works, we tackle the issue

f processing and analyzing the high-volume of data collected by

etectors. From this perspective, our effort consists in the proposal

f a distributed implementation in the Apache Spark framework

hat is capable of processing large-scale data efficiently. 

Although model architectures based on convolutional neural

etworks and recurrent neural networks are typically more suit-

ble for data including temporal information, this implies in a

igher model complexity, which results in a higher training time.

ith the aim to provide a valid tradeoff between accuracy and

calability, we concentrate on a simpler model, i.e. autoencoders,

ince they can be efficiently trained in a distributed manner on a

luster of computational nodes. 

. Method 

In this section, we describe the two proposed approaches for

Ws detection in time series. The first approach exploits auto-

ncoder models to classify strain time series data with an unsu-

ervised anomaly detection strategy, whereas the second one uses

uto-encoders for feature extraction and performs supervised clas-

ification. 

.1. Time series classification via anomaly detection (AE) 

In this approach, we adopt auto-encoders as in Bengio et al.

2009) , motivated by their recognized effectiveness when learn-

ng to reconstruct a specific input data representation with high

ccuracy, as demonstrated by Najafabadi et al. (2015) , and for

heir potential in terms of feature extraction capabilities, as shown

y Hinton and Salakhutdinov (2006) . This feature has been used

n the literature for anomaly detection, as shown by Japkowicz

2001) and Zhou and Paffenroth (2017) , by analyzing the recon-

truction error. The approach consists in training the auto-encoder

ith one-class data. Afterward, for a new data instance at predic-

ion time, if a high reconstruction error of the auto-encoder is ob-

erved, then this data instance is assumed to belong to a differ-

nt data distribution than that associated to training data. When

his situation happens, the new data instance is labeled as an

nomaly, i.e. a data instance that potentially contain a real GWs

ignal. The rationale of this approach is that we can train an auto-

ncoder with data representing different types of noise (i.e., the

egative class, also regarded as the normal class) which are abun-

ant, in contrast to few GWs signals observed so far, and classify

nseen time series by evaluating their reconstruction error given

y the auto-encoder model. Typically, noise is continuously ob-

erved, whereas GW signals appear in a limited time frame of a

ime series. According to the anomaly detection setting, a time se-

ies classified as anomaly corresponds to a time series that con-

ains a real GWs signal 
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Fig. 3. Feature extraction process performed using the encoding function of the 

trained auto-encoder. 
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Fig. 4. Workflow of the AE proposed method. Negative class time series (red) are 

exploited to train an auto-encoder model that accurately reconstructs noisy time 

series. At prediction time, a new time series of unknown class (yellow) is provided 

as input to the model, and the prediction class is returned, depending on the re- 

construction error observed. 
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Each auto-encoder has an encoding function γ and a decoding

unction δ. The goal of the auto-encoder is the following: 

γ : X → F , δ : F → X , 

, δ = arg min 

γ ,δ
‖ X − δ(γ (X )) ‖ 

2 , (1) 

here X is the data input space (each instance is representing a

ime series), and F is the encoding space (features learned by the

uto-encoder). 

The functions γ and δ are chosen to be parametric and differ-

ntiable with respect to a distance function. In this way, the pa-

ameters of the encoding and decoding functions can be optimized

n order to minimize the reconstruction loss. 

The learning process for an auto-encoder takes place via back-

ropagation. The process results in a first layer trained with raw

ata, which extracts new vectors of reduced dimensionality, by

eans of the activation function of the hidden neurons. 

The architecture can consist of multiple hidden layers. In the

ase of two hidden layers, the output of the second hidden layer

ill be a second level encoding of the input data. The final layer of

he auto-encoder is a layer of the same size of input data and pro-

ides the reconstruction of the input. When the purpose is classifi-

ation, usually only the encoding part is used, and the autoencoder

s solely used for initialization, as shown in Fig. 3 . 

In the AE approach described in this subsection, the final layer

f the architecture has the same number of neurons as the input

ayer, such that the decoding stage can be used to reconstruct time

eries. Instead, the AE-FE approach presented in the following sub-

ection solely uses the encoding stage to extract features that are

n turn exploited by classification models. 

With one hidden layer, the encoding stage of an auto-encoder

akes the input x ∈ R 

d = X and maps it to an hidden representa-

ion z ∈ R 

p = F , where σ is a sigmoid or a rectified linear unit

ctivation function, W is a weight matrix, and b is a bias vector: 

 = σ ( Wx + b ) . (2) 

The decoding stage reconstructs x from z as: 

 

′ = σ ′ ( W 

′ z + b ) , (3) 
t  
uch that the following loss is minimized: 

 2 (x , x 

′ ) = ‖ x − x 

′ ‖ 

2 = ‖ x − σ ′ ( W 

′ (σ ( Wx + b )) + b 

′ ) ‖ 

2 . (4) 

Each time the auto-encoder is trained using training data, a

hreshold representing the maximum allowed distance is calcu-

ated. This threshold allows to define an upper bound to decide

hether a data instance can be assumed to belong to the noise

ata distribution, or not. More precisely, when a data instance

resents a reconstruction error that exceeds the defined threshold,

t is classified as non-noise (real GW time series). Otherwise, it will

e classified as noise. The flow of this method of classification is

hown in Fig. 4 . 

It is important to stress that a valid decision on the threshold

ust take into account the data distribution of reconstruction er-

ors. In order to take into account possible changes of such distri-

ution over time (i.e, concept drift), we recalculate the threshold

ach time the auto-encoder is trained as: [ e + f · σe ] , following a

ne-tailed sigma rule as described by Pukelsheim (1994) , where f

s the factor allowed for the standard deviation, e is the average

econstruction error of training instances and σ e is the standard

eviation of such errors. 

This mechanism allows us to avoid defining the threshold man-

ally, which could lead to a degradation in performance over time,

ue to changes in the data distribution. Specifying the threshold

n terms of number of standard deviations from the mean, allows

s to calculate the actual reconstruction error threshold automati-

ally from training data, based on its error distribution. In general,

he threshold selection is an open problem that is tackled in dif-

erent ways in the literature and has a significant impact on the

erformance of the anomaly detection task, as shown by An and

ho (2015) , Khan and Taati (2017) , Bontemps, McDermott, Le-Khac

t al. (2016) and Clark, Liu, and Japkowicz (2018) . 

Although the reconstruction error approach for anomaly detec-

ion has been already used in past literature, it was, to the best

f our knowledge, never applied in the context of GWs. Moreover,

ne of the significant drawbacks of this approach is that it requires

n accurate estimation of the threshold. Therefore, by estimating it

utomatically, we solve this issue, also taking into account possible

hanges in the learned distribution. 

.2. Feature extraction with supervised classification (AE-FE) 

In deep neural networks, hidden layers represent latent struc-

ures that incorporate newly extracted features that are increas-
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Fig. 5. Workflow of the AE-FE proposed method. Negative class time series (red) 

are exploited to train an auto-encoder model that accurately reconstructs noisy 

time series. The auto-encoder encodes both negative class (red) and positive class 

(green) time series and the resulting representation is used to train a classifier. At 

prediction time, a new time series of unknown class (yellow) is provided to the 

classification model, which returns its prediction. 
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ingly abstract. Therefore, the entire set of hidden layers can be

seen as a feature hierarchy with an increasing degree of com-

plexity. Gehring, Miao, Metze, and Waibel (2013) , Masci et al.

(2011) and Bertsekas (2019) have shown that deep auto-encoders

preserve the feature extraction capability of traditional auto-

encoders, thus allowing to extract a low-dimensional embedding

feature space, as done in works by Hinton and Salakhutdinov

(2006) and Japkowicz, Hanson, and Gluck (2000) . 

In this approach, we exploit auto-encoders exclusively for fea-

ture extraction. For such purpose, we define the hidden layers with

a lower number of neurons, and they represent a new feature

space with reduced dimensionality for input data, also called bot-

tleneck features. 

The feature extraction process extracts features recurring to the

encoding function of the previously trained auto-encoder. More

specifically, considering an auto-encoder architecture composed by

one or two hidden layers, the encoding process transforms the in-

put data feature space F , with | F | features, in a new feature space

H 1 of dimensionality | H 1| � | F |. A second encoding stage allows to

obtain a new feature space H 2 of dimensionality | H 2| � | H 1|. 

Adopting auto-encoders for feature extraction allows us to ex-

tract a new embedding feature space that describes data at a

higher level of abstraction, and with a reduced dimensionality

compared to the original input feature space. The primary goal

of this process is to mitigate the collinearity phenomenon be-

tween features, as done by Corizzo et al. (2019) and, as a conse-

quence, improve its reliability for learning tasks. More details on

the collinearity phenomenon can be found in studies by Mason

and Perreault Jr (1991) and Belsley, Kuh, and Welsch (1980) . Once

the features have been extracted, they can be exploited by a pre-

diction model to perform classification in the new feature space. 

In the proposed method, we adopt different methods as pre-

diction models, taking place to different alternatives of the algo-

rithm. We define a suffix in the method name to identify the se-

lected classifier. For example, when Gradient-Boosted Trees (GBTs)

are selected as a prediction model, the resulting method is iden-

tified as AE-GBT. GBTs are an ensemble-based method that trains

decision trees iteratively, by minimizing a loss function, and fol-

lowing a boosting process, as described by Li, Lin, Zheng, and Wang

(2017) . The ensemble improves iteratively by predicting target val-

ues at each iteration, and relabeling the dataset according to a spe-

cific loss function, in order to facilitate an improvement of the next

decision tree, taking into account weak predictions made in the

past. In this way, GBTs are able to reduce the loss function after

each training iteration. One important benefit provided by GBTs is

to be able to model non-linear interactions between independent

and dependent variables. 

Our motivation to include GBTs in our selection of algo-

rithms stands in their demonstrated high performance in pre-

dictive modeling and forecasting tasks, as shown in the studies

by Ganjisaffar, Caruana, and Lopes (2011) and Chen and Guestrin

(2016) . Zieba, Tomczak, and Tomczak (2016) and Ceci, Corizzo,

Fumarola, Malerba, and Rashkovska (2017) obtained high perfor-

mance in bankruptcy prediction and energy forecasting applica-

tions, respectively. Alternative classification algorithms used in our

work include Logistic Regression (AE-LR), ExtraTrees (AE-ERT), Ran-

dom Forest (AE-RF), XGBoost (AE-XGB) and Support Vector Ma-

chines (AE-SVM). In the experimental results, we refer to the AE-FE

method using the notation of the specific classification algorithm

selected for the classification step (i.e. AE-LR, AE-ERT, AE-GBT, AE-

XGB, AE-SVM) 

The distributed GBTs implementation used in this work is that

available in the Apache Spark Mllib library 2 . 
2 https://spark.apache.org/docs/latest/mllib-ensembles.html . 

 

r  
Although the most common approach for classification consists

n the adoption of a final classification layer to the auto-encoder

odel, this choice requires a two-step optimization process: the

rst for the auto-encoder training, based on the reconstruction

oss, and the second for the classification model, based on the clas-

ification loss. Since our main focus in this paper is to provide high

ccuracy and scalability at the same time, we preferred the adop-

ion of traditional machine learning methods for the classification

tep, after observing that they are capable to achieve a high pre-

ictive accuracy while requiring a lower training time compared to

he aforementioned approach. 

The feature extraction step is represented in Fig. 3 , while the

E-FE approach is represented in Fig. 5 . From this figure it is pos-

ible to understand an essential aspect of our approach: supervised

odels are trained on features extracted by auto-encoders, even on

ata representing different classes. In fact, even if the auto-encoder

as been trained on time series of the negative class (noise), it

xtracts features also for time series of the positive class, assum-

ng that some labeled data for the positive class is available. The

ationale is that, since GWs signals are immersed in noise, and

hus resemble the morphology of the noise, the encoded repre-

entation of the extracted features allows to highlight important

atterns that result crucial for the classification step. In this way,

he supervised model learns to discriminate classes based on the

ifference in the encoded vector representation extracted by the

uto-encoder. 

. Experiments 

In this section, we describe the datasets and the experimental

esults obtained in our study, with the two proposed approaches:

https://spark.apache.org/docs/latest/mllib-ensembles.html


R. Corizzo, M. Ceci and E. Zdravevski et al. / Expert Systems With Applications 151 (2020) 113378 7 

t  

e

4

 

g  

c  

t

h

 

t

 

 

l  

L  

f  

(  

e  

p  

e  

s  

s  

f

 

(  

d  

s  

f  

t

 

o  

s  

b  

T  

N  

a  

g

 

n  

r

 

 

 

 

 

 

 

 

Table 1 

Overview of the datasets used in the experiments. All variants of GW2 

with varying noise rates present the same characteristics. 

Dataset Class Number of Length of Length of 

time series time series time series 

(1 sec.) (3 sec.) 

GW1 / GW2 Signal 80 4096 12,288 

GW1 / GW2 Noise 70 4096 12,288 

GW3 Signal 104 4096 12,288 

GW3 Noise 92 4096 12,288 

GW4 Noise 50,000 4096 NA 

Table 2 

Gravitational waves events con- 

sidered in the GW1, GW2 and 

GW3 datasets, and their Signal-to- 

Noise Ratio (SNR) observed at the 

interferometers. 

Event Signal-to-Noise 

ID Ratio (SNR) 

GW150914 24 

LVT151012 9.7 

GW151226 13 

GW170104 13 
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ime series classification via anomaly detection (AE) and feature

xtraction with supervised classification (AE-FE). 

.1. Data description 

In this paper, we analyze time series data representing the

ravitational strain collected by detectors, that is, the fractional

hanges in the lengths along the two axes (x-arm and y-arm cavi-

ies): 

 (t) = 

�L y − �L x 

L 
. (5) 

GWs raw data are also available in the hdf5 data format 3 . This

ree-like format contains the following three files: 

• meta : various metadata describing the time series observed,

the detector, etc; 
• quality : information about the quality of the data collected; 
• strain : the actual time series collected by the detector. 

In particular, our dataset includes positive class time series re-

ated to four published gravitational wave discoveries (GW150914,

VT151012, GW151226, and GW170104) detected from LIGO inter-

erometers, as described by Acernese et al. (2015) and Aasi et al.

2015) , all of which are short-duration BBH (Binary Black Hole)

vents 4 . Time series of 1 and 3 seconds are collected at a sam-

le rate of 4096 Hz, which leads to time series of 4096 and 12,288

lements, respectively. Each event presents four time series, repre-

enting the data strain collected at H1 (Hanford) and L1 (Living-

tone) interferometers, and their corresponding whitened version,

ollowing to pre-processing steps. 

Inspired by Shen et al. (2017) and George, Shen, and Huerta

2017) , we perform data augmentation to enhance the size of the

ataset. In particular, time series are shifted in time by an offset in

econds o ∈ {−0 . 25 , −0 . 125 , 0 . 125 , 0 . 25 } . This augmentation leads,

or each time granularity, to 20 time series for each event, and a

otal of 80 time series. 

In order to learn from noise and generalize over different types

f noise, the dataset also includes negative class time series, corre-

ponding to 70 different types of noise, generated (and simulated)

y the PyCBC Python library, specialized for GWs data generation 

5 .

his library has been extensively used in the literature by Nielsen,

itz, Capano, and Brown (2019) , Nitz, Dent, Dal Canton, Fairhurst,

nd Brown (2017) , Usman et al. (2016) and Gebhard et al. (2017) to

enerate reliable GWs data for analysis. 

Alternatively, we extract real gravitational noise located in the

ear proximity (3–15 seconds) of real GWs events directly from the

elated time series data. 

Time series are then normalized using min-max normalization. 

In the end, three datasets are created: 

• GW1 : It contains positive class and negative class time series as

explained above. 
• GW2 : Time series for the negative class correspond to those in

GW1, whereas time series for the positive class P are obtained

blending whitened signals time series W with the different

noisy time series N , at different noise rates ( α = 0 . 1 , 0 . 25 , 0 . 50 ),

using an element-wise weighted average approach. Therefore,

given a combination of a whitened time series w ∈ W and

a noisy time series n ∈ N, the following formula is applied
3 https://www.gw-openscience.org/data/ . 
4 https://losc.ligo.org/s/events/GW150914/LOSC _ Event _ tutorial _ GW150914.html . 
5 http://pycbc.org/pycbc/latest/html/noise.html . 

i  

h  

r  

h  

l  
for each element i in order to obtain the resulting time

series p : 

p [ i ] = (1 − α) · w [ t] + α · n [ t] . (6)

• GW3 : Time series for the positive class correspond to those

in GW1. For the negative class, the time series are obtained

by sampling gravitational noise in the near proximity (3–

15 seconds) of the events GW170729, GW170809, GW170817,

GW170608, GW170814, GW170818, and GW170823. We inten-

tionally included noise located very closely to the events, in or-

der to perform a more realistic evaluation. In fact, the 3-second

buffer around an event is meant to make sure that no traces of

the GW event are included in the noise data. 
• GW4 : In order to perform scalability experiments on a larger

sized dataset, we propose an additional dataset obtained repli-

cating all negative class time series of 1 sec. length (4096 fea-

ture values) available from the GW1 dataset multiple times, re-

sulting in up to 50.0 0 0 time series. In the replication process,

we simulate the presence of new time series belonging to the

same data distribution of the original ones. 

An overview on the datasets used is described in Table 1 and

able 2 . Depending on the learning approach used, time series are

sed for one-class learning on the negative class and anomaly de-

ection on newly arriving data (AE approach), or for feature extrac-

ion and subsequent supervised classification on both classes (AE-

E approach). The three datasets involved in our analysis (GW1,

W2, GW3) are ordered by difficulty, that is, from the simplest

o the most challenging. Since GW4 is a larger scaled version of

W1, it is exploited exclusively for scalability experiments (see

ection 4.4 ). 

.2. Experimental setup 

For the two approaches, we consider different configurations,

n terms of model architectures for the auto-encoder (1 or 2

idden layers for encoding and 1 or 2 hidden layers for decoding,

espectively). In the case of one hidden layer, the number of

idden units is set to 512 or 1024. In the case of two hidden

ayers, the number of hidden units is set to 512 for the first layer,

https://www.gw-openscience.org/data/
https://losc.ligo.org/s/events/GW150914/LOSC_Event_tutorial_GW150914.html
http://pycbc.org/pycbc/latest/html/noise.html
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Table 3 

Sensitivity study on the threshold f and its impact on classification 

performance for the AE approach on all datasets with time series 

length of 1 second. The model architecture adopted consists of one 

hidden layer with 512 units. Best results in terms of F-Score are 

marked in bold. 

Dataset Threshold f Precision Recall F-Score 

GW1 1.5 0.9938 0.9933 0.9933 

GW1 3.0 0.8641 0.6600 0.6934 

GW1 4.5 0.9558 0.5200 0.6400 

GW2 (N = 0.1) 1.5 0.9761 0.9733 0.9734 

GW2 (N = 0.1) 3.0 0.9190 0.4400 0.5950 

GW2 (N = 0.1) 4.5 1 0.4666 0.6363 

GW2 (N = 0.25) 1.5 0.8902 0.7066 0.7471 

GW2 (N = 0.25) 3.0 0.9190 0.4400 0.5950 

GW2 (N = 0.25) 4.5 1 0.4666 0.6363 

GW2 (N = 0.5) 1.5 0.8786 0.4933 0.5993 

GW2 (N = 0.5) 3.0 0.9190 0.4400 0.5950 

GW2 (N = 0.5) 4.5 1 0.4666 0.6363 

GW3 1.5 1.0 0.4285 0.6000 

GW3 3.0 1.0 0.4285 0.6000 

GW3 4.5 1.0 0.4285 0.6000 
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and 256 for the second layer, or to 1024 for the first layer, and 512

for the second layer. 

A 5-fold cross-validation scheme was used in the experiments

on the GW1 and GW2 dataset. In the GW3 dataset, the split gen-

eration procedure is iterative and it selected at each fold all the

representations of one specific signal (i.e., a GW event) as test set,

and all the remaining signals as training set. This choice guaran-

tees that all the representations of the same signal are either in

the training set or in the test set. Since the signals in the posi-

tive class are four, the experimental setup relates to a 4-fold cross-

validation scheme. In other words, this is a leave-one-subject-out

cross-validation scheme where a subject refers to a GW event

signal. 
Table 4 

Summary of hyperparameter configurations for all methods. 

Methods Parameter 

Conv1D, Conv1D (2) Conv Layers 

Activation Function (Conv) 

Filters 

Filter length 

Max Pooling Layers Size 

Dense Layers 

Activation Function (Output) 

Conv1D, Conv1D (2), Learning rate 

Deep Filtering Dropout 

Batch Size 

Dense Units 

AE Threshold f 

AE, AE-FE Hidden Units 

Hidden Layers 

Max Epochs 

tol 

AE-LR maxIter 

AE-ERT, AE-RF numEstimators 

AE-GBT maxIter 

maxDept h 

maxBins 

minInstancesPerNode 

lossType 

AE-XGB numEstimators 

AE-SVM Kernel Type 

C 

Gamma 
Considering that the time series analyzed are collected at a

096 Hz sample rate, 512 hidden units correspond to 1 
8 of the

-second time series length, or 1 
24 of the 3 seconds time series

ength. Accordingly, 1024 hidden units correspond to 1 
4 of the 1-

econd time series length, or 1 
12 of the 3 seconds time series

ength. 

The auto-encoder training procedure takes place with the

BFGS optimizer, which follows the minimization of the recon-

truction error using training data (non-anomaly instances), stops

f the maximum number of iterations is reached (500) or a stop-

ing criterion is reached ( tol < 10 e − 5 ). In particular, the toler-

nce criterion allows for early stopping if the algorithm is unable

o reduce the training error by a specified tolerance at a certain

teration. 

In detection mode, we set the factor for the standard deviation

o f = 1 . 5 . This choice is motivated by a preliminary sensitivity

tudy on the impact of different threshold values on the classifi-

ation performance (see Table 3 ). In fact, the best classification re-

ults are obtained with f = 1 . 5 . There is only one case in which

f = 1 . 5 does not reveal the best performance in terms of F-Score

GW2 dataset with noise N = 0.5), but even in this circumstance

t is still capable to achieve the best performance in terms of

ecall. 

Regarding the feature extraction approach, the features ob-

ained are exploited by different classifiers. Specifically, we per-

orm experiments with Logistic Regression (AE-LR), Gradient-

oosted Trees (AE-GBT), ExtraTrees (AE-ERT), Random Forest

AE-RF), XGBoost (AE-XGB) and Support Vector Machines (AE-

VM). 

We compared our approach with one-dimensional convolu-

ional neural networks. In the experiments, we refer to this

ethod as Conv1D. 

For all methods, we perform hyperparameter selection via

rid search (see Lameski, Zdravevski, Mingov, & Kulakov (2015) ).

 summary of the configurations used are summarized in

able 4 . 
Min Max Step Set of values 

/ / / {2} 

/ / / {ReLU} 

20 40 20 / 

3 6 3 / 

/ / / {2} 

/ / / {(512,256), (1024,512)} 

/ / / {Softmax} 

10 −4 10 −1 {10 1 } / 

0.1 0.3 0.2 / 

8 32 8 / 

512 1024 512 / 

1.5 4.5 1.5 / 

512 1024 512 / 

1 2 1 / 

/ / 500 / 

/ / / { 10 e − 5 } 

/ / / {100} 

/ / / {10, 100, 1000} 

/ / / {10} 

/ / / {5} 

/ / / {32} 

/ / / {1} 

/ / / {logistic} 

/ / / {1000} 

/ / / {RBF} 

1 100 10 1 / 

0.0001 0.1 10 1 / 
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Table 5 

Summary of experimental results in terms of F-Score obtained with the optimal configuration for each method and dataset. The best F-Score obtained for each 

dataset is marked in bold. In cases where more than one configuration obtained the same optimal performance, we report the simplest configuration in terms 

of model architecture (least number of hidden layers and neurons). The number of hidden layers and neurons for Conv1D, Conv1D (2) and Deep Filtering (DF) 

refer to their final dense layers. 

Dataset Optimal Conv1D Conv1D (2) Deep AE AE-LR AE-GBT AE-ERT AE-RF AE-XGB AE-SVM 

Configuration Filtering 

GW1 Time series length (s) 1 1 3 1 3 3 3 3 3 3 

Hidden layers 1 2 2 1 1 1 1 1 1 1 

Neurons 512 512-256 128-64 1024 512 512 512 512 512 512 

F-Score 0.9933 0.9932 0.9932 0.9934 0.9933 1 1 1 1 1 

GW2 Time series length (s) 1 1 3 1 or 3 3 1 3 1 or 3 1 3 

(N = 10%) Hidden layers 1 2 2 1 1 1 1 1 1 1 

Neurons 512 512-256 128-64 512 512 512 512 512 512 512 

F-Score 0.9797 0.9796 0.7205 0.9735 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933 

GW2 Time series length (s) 1 1 3 1 1 1 3 3 3 3 

(N = 25%) Hidden layers 1 2 2 2 1 1 1 1 1 1 

Neurons 512 1024-512 128-64 512-256 512 1024 1024 512 1024 512 

F-Score 0.939 0.9796 0.85 0.7469 0.973 0.9933 0.9798 0.9821 0.9709 0.9888 

GW2 Time series length (s) 1 1 or 3 3 3 3 3 3 3 3 3 

(N = 50%) Hidden layers 1 2 2 1 1 2 1 1 1 1 

Neurons 1024 512-256 128-64 512 1024 512-256 1024 512 1024 512 

F-Score 0.847 0.9659 0.6782 0.6021 0.946 0.9866 0.9595 0.9597 0.9463 0.9798 

GW3 Time series length 1 sec 3 3 1 3 3 3 3 3 3 

Hidden layers 1 2 2 1 1 2 1 1 1 1 

Neurons 1024 512-256 128-64 512 1024 512-256 1024 1024 512 1024 

F-Score 0.5889 0.5522 0.4155 0.6388 0.7797 0.6559 0.7947 0.7877 0.8194 0.7934 
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Table 6 

Average Rankings of the algo- 

rithms (Friedman). The lowest 

ranking is marked in bold. 

Algorithm Ranking 

Conv1D 8.643 

Conv1D (2) 6.725 

Deep Filtering 9.062 

AE 7.474 

AE-LR 5.200 

AE-GBT 3.843 

AE-ERT 3.075 

AE-RF 3.150 

AE-XGB 5.312 

AE-SVM 2.512 
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The selected values for the grid search are motivated by stud-

es in the literature that provide specific heuristics. Specifically,

engio (2012) observed that a valid default value for the batch size

s 32, and other powers of 2 are feasible candidates. For learning

ate, the author suggests to start from a default value of 0.01 and

xperiment with a decreasing factor (negative power of 10), con-

idering 10 −6 as extremely minimum value. Regarding dropout 6 ,

he study by Srivastava et al. (2014) shows that values below 50%

hould be preferred, in order to avoid the removal of too many

eurons that would cause an under-learning phenomenon. The hy-

erparameters are optimized according to a nested cross-validation

cheme. 

Moreover, we performed experiments with Deep Filtering (DF),

ntroduced by George and Huerta (2018) , a state-of-the-art method

or gravitational waves analysis capable of working directly data

n the form of time series. This method features a deep archi-

ecture based on one-dimensional convolutional neural networks.

pecifically, it presents 4 convolution layers with dilations, fil-

er sizes of 64, 128, 256, and 512 respectively, and 2 fully con-

ected layers with sizes 128 and 64. More details on the ar-

hitecture can be found in the study by George and Huerta

2018) . 

Our methods are implemented using the Scala programming

anguage, exploiting Apache Spark as a distributed programming

ramework, whereas all competitors methods are implemented us-

ng the Python language exploiting the Keras library (see Chollet

t al. (2015) ). 

Table 5 shows a summary of the best experimental results in

erms of F-Score obtained with the optimal configuration for each

ethod and dataset. The nonparametric statistical tests performed

ith the toolkit proposed by García, Fernández, Luengo, and Her-

era (2010) , are shown in Table 6 . Detailed scores of all algorithms

n each dataset and different configurations are presented in Ap-

endix in Tables 7–11 . 
6 Dropout, as described by Srivastava, Hinton, Krizhevsky, Sutskever, and 

alakhutdinov (2014) is a regularization technique that reduces overfitting in neural 

etworks by dropping out units (both hidden and visible). 

t  

o  

t  

t  

e  
.3. Accuracy results 

Table 7 reports results in terms of Precision, Recall and F-

core for the two proposed approaches (AE and AE-FE), for two

mplementations of one-dimensional convolutional neural net- 

orks (Conv1D), and for Deep Filtering (DF) with the GW1

ataset. 

Common perception is that, in astrophysical data analysis, a

igher Recall should be preferred compared to a higher Precision.

nder this assumption, a better coverage in the detection of real

W would be obtained at the cost of a higher number of False

ositives, that should be subsequently discarded manually. How-

ver, a perfect Recall performance could be obtained by a model

hat systematically predicts the positive class. Moreover, all col-

ected gravitational data is being stored permanently, so retrospec-

ive processing of historical data, and potentially detecting missed

vents is still possible. Therefore, having a non-perfect Recall is ac-

eptable. On the other hand, the results of detection of GW with

he proposed methods could be used by astronomers as feedback

n what to focus on. Consequently, they could decide to modify

he positioning of a telescope system in order to observe a poten-

ial phenomenon (e.g., a source of GWs). This could be a costly op-

ration, therefore the cost of false positives could be devastating,
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hence the importance of the Precision. Therefore, a tradeoff be-

tween Precision and Recall is necessary, also in order to avoid a too

expensive manual intervention in filtering False Positives. This mo-

tivates the adoption of the F-Score as a reference metric to com-

pare all approaches, since it provides a balance between Precision

and Recall. 

The results show that both the proposed approaches can ob-

tain very high accuracy, classifying noise and real GWs time se-

ries effectively. Concerning the AE approach, once the auto-encoder

has been trained with time series representing different types of

noise, the detection approach based on reconstruction error with

automatic threshold estimation can discriminate effectively unseen

time series between noise and GWs. Moreover, there is no signif-

icant difference between the different auto-encoder architectures

in terms of the predictive accuracy obtained. The same consider-

ation holds when comparing AE, AE-FE, and Conv1D, which ob-

tain similar results. Overall, the best results in terms of F-Score

are obtained by AE-FE. However, it is important to stress that the

AE approach assumes no prior knowledge about the data distri-

bution of the positive class, representing GWs phenomena, and it

provides classification solely based on the reconstruction error of

unseen time series. This feature is particularly useful considering

that, currently, very few time series representing GWs phenomena

have been observed and validated, and a supervised approach con-

sidering the two classes might be subject to degradation. In this

case, the detection of unseen phenomena might result in difficulty,

whereas it could still be performed accurately relying on the re-

construction error approach. 

Table 8, Table 9 , and Table 10 report the results obtained with

the GW2 dataset, with noise levels of 10%, 25% and 50%, respec-

tively. The results show that AE and AE-FE are still comparable

when the noise rate is 10%, whereas the performances of AE and

Conv1D start degrading. The difference in terms of F-Score be-

tween AE-FE and the competitor methods appears more consistent

in this dataset, compared to the GW1 dataset. These results further

confirm the fact that AE-FE is the best approach. 

The degradation of AE is particularly visible in terms of Recall,

while Precision is still relatively high. This behavior means that the

AE model still returns the correct class when it returns a prediction

for the positive class, but it misses the recognition of positive class

time series (i.e., the noise is impacting the model in terms of an

increase in the number of false negatives). 

This result was expected since, in the GW2 dataset, positive

class time series are obtained by contaminating whitened signals

with the same noise distribution learned by the auto-encoder (AE

approach). In particular, the strong perturbation leads the distri-

butions of real GWs signals and noise to get closer. This per-

turbation also leads to a significant reduction of the differences

in terms of reconstruction error among time series of different

classes. Therefore, the reconstruction error threshold learned for

the AE approach results no longer accurate when used to distin-

guish between the two classes. On the other hand, the AE-FE ap-

proach maintains optimal performance, also when noise increases:

the model is capable of learning accurately the mapping between

variations in features values extracted via the auto-encoder and

the corresponding class, even when they are small, thanks to the

positively labeled time series used during the training phase of

gradient-boosted trees. 

Another consideration regarding the AE approach is that its per-

formance appears in some cases worse when it processes time se-

ries of 3 seconds. One explanation of this result is that, especially

in presence of a high noise rate, the contribution of the noise in

terms of high reconstruction error is consistent, whereas the con-

tribution of the signal appears negligible, since it represents a frac-

tion of the overall duration of the time series. This aspect implies

that the classification task is more challenging with time series of
 seconds. On the other hand, the convolutional filters of the Deep

iltering method perform better with longer time series, although

he overall classification result is still much worse than our pro-

osed approaches. 

It is also possible to observe that the AE approach appears

n some cases worse when the network size increases in terms

f neurons or layers. This result implies that, for the particu-

ar model and optimization algorithm we adopted, larger-sized

etworks have a better likelihood to propagate data noise at

urther layers, resulting in a less accurate classification per-

ormance, whereas smaller-sized networks appear more capa-

le to reduce noise propagation and extract a more compact

nd reliable data representation that results in more accurate

lassifications. 

Table 11 reports the results obtained with the GW3 dataset. It is

ossible to observe a further degradation in the performance of all

ethods, deriving from the increased complexity of the task. How-

ver, AE-FE still appears to be the best approach, with satisfactory

lassification performance in terms of F-Score. 

A summary of experimental results obtained for all methods

onsidered and with all datasets is shown in Fig. 6 and 7 . The

ar charts show the best F-Score obtained by each method se-

ecting its best performing configuration. It is noteworthy that,

ven if the competitor methods analyzed in our study utilize di-

ectly time series of the two classes, and are free to learn char-

cteristics of both noise and GWs, they exhibit lower classification

erformance. 

In order to statistically validate the results obtained, in

able 12 we report the p -values of the Wilcoxon Signed Rank tests.

he results show that, overall, both the proposed AE and AE-FE

ignificantly outperform the competitor methods, and that AE-FE

ignificantly outperforms AE. 

Although AE-FE results appear favorable, it is noteworthy that

he AE-FE approach is based on the assumption that the distribu-

ion of positive class phenomena is known since, differently from

he AE approach, it requires data of both classes during the train-

ng phase. This assumption holds also for the Conv1D and the Deep

iltering methods. 

However, this assumption might be too strong in the context of

Ws analysis, since it is not always possible to know the morphol-

gy of the expected phenomena, given the current limited knowl-

dge based on a small number of verified phenomena. In this per-

pective, the AE approach could be a valid alternative to AE-FE. In

act, the results obtained, which are generally in favor of the AE-

E approach, might represent a scenario that may be more or less

ealistic, depending on the context. 

Additional nonparametric statistical tests performed with the

oolkit proposed by García et al. (2010) , are shown in Table 6 . In or-

er to statistically confirm the results obtained, we used the Fried-

an test with the Nemenyi post-hoc test at α = 0 . 05 . In Fig. 8 ,

e depict the result of the test, which shows that the methods

xploiting our proposed feature extraction approach significantly

utperform other methods. 

.4. Scalability results 

In order to assess the execution performance of our dis-

ributed implementation, we performed scalability experiments on

PUs. 

Considering that the analytic task we address is computation-

lly and memory intensive, depending on the amount of data re-

uired for training, the purpose is to evaluate if our method is ca-

able of scaling with increasing data size, and with an increasing

umber of CPUs. Moreover, we are interested in measuring the ad-

antage in terms of running time for a distributed execution, with
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Fig. 6. Summary of experimental results with the GW1 (a) and GW3 (b) datasets for all considered methods with time series of length 1 second and 3 seconds. The bar 

charts show the best F-Score obtained by each method selecting its best performing configuration. 

Fig. 7. Summary of experimental results with the GW2 dataset for all considered methods with time series of length 1 second and 3 seconds, and noise levels 0.1, 0.25 and 

0.5. The bar chart shows the best F-Score obtained by each method selecting its best performing configuration. 

Fig. 8. Nemenyi post-hoc critical distance diagram. If the distance between methods is less than the critical distance (at p-value = 0.05), there is no statistically significant 

difference between them. 



12 R. Corizzo, M. Ceci and E. Zdravevski et al. / Expert Systems With Applications 151 (2020) 113378 

Fig. 9. Scalability results in terms of execution time (left), speedup (right), and time fraction between distributed and local executions (bottom) for the AE approach, obtained 

with two cluster configurations. The two curves (1) and (2) refer to the different Spark cluster configurations on Azure HDInsight. 
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respect to a local execution of the method (i.e., running on a single

machine). 

The focus of the experiment is on the AE approach, which

trains auto-encoders and constitutes the core of our contribution

in terms of code implementation. In fact, AE-FE is a combination

of the AE approach with classification models that are available as

stable implementations in different machine learning libraries and

frameworks. 

As explained in Section 4 , our experiments are performed on

the GW4 dataset, obtained replicating all negative class time se-

ries of 1 sec. length (4096 feature values) available from the GW1

dataset multiple times, resulting in up to 50.0 0 0 time series. In

the replication process, we simulate the presence of new time se-

ries belonging to the same data distribution of the original ones.

For this purpose, for each time series selected randomly from the

original dataset, the new time series is obtained by introducing,

at most, 1% perturbation of each element of the time series. This

choice was necessary in order to avoid full replication of time se-

ries, which could result in an unrealistically fast convergence of the

loss function. 

In the experiments, we adopted two Spark cluster configura-

tions on Microsoft Azure HDInsight cloud infrastructure 7 . 

For the local setting, we adopt a configuration with 2 D12

head nodes, and one worker node of the same instance type

(D12). 
7 https://azure.microsoft.com/en- us/pricing/details/virtual- machines/linux/ . 

o  

f

A D12 instance is equipped with four cores and 28 GB of RAM,

hereas a D13 instance has eight cores and 56 GB of RAM, and a

14 instance has 16 cores and 112 GB RAM. 

The first cluster configuration consists of 2 D12 head nodes and

 D13 worker nodes. This cluster presents a scale factor of 8 com-

ared to the local counterpart. 

The second cluster configuration consists of 2 D12 head nodes

nd 8 D14 worker nodes. This cluster presents a scale factor of 16

ompared to the local counterpart and a scale factor of 2 compared

o the first cluster configuration. 

For all cluster sizes and dataset sizes, we evaluated different

onfigurations for the Spark job, including the number of execu-

ors (4, 8, 16), the number of executor cores (4, 8 and 16) and the

xecutor memory (4 GB, 8 GB, 16 GB, and 32 GB). We argue that

n a real-life deployment scenario the data volume to be collected

nd analyzed per time unit is known upfront, considering that

he sample rate of the detectors is predefined. Therefore, config-

ring cluster parameters to the expected data volume is a possible

hoice. 

Fig. 9 shows the results in terms of execution time (left) and

he speedup factor (right) observed with the best parameter val-

es on the two clusters. The speedup graph does not contain the

ast point, related to 50.0 0 0 time series, since the local execution

ould not be completed successfully due to an excessive memory

nd CPU overhead. Fig. 10 presents a different perspective in terms

f execution time with a varying number of worker CPUs and dif-

erent amounts of processed data. 

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
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Fig. 10. Scalability results in terms of execution time with a varying number of 

CPUs: 8 - Local, 32 - Distributed (1), 64 - Distributed (2). The missing point of 

the last series in the graph (833.33 minutes of processed data) denotes that the 

Local configuration with 8 worker CPUs could not complete the training process 

successfully due to an excessive memory and CPU overhead. 
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Overall, it is possible to observe that the proposed imple-

entation is capable of scaling linearly as data increases. More-

ver, the speedup factor obtained with the distributed execu-

ion is consistently high, and it still increases with the addition

f worker cores, considering the improvement obtained by clus-

er configuration. This performance confirms that our approach

enefits from a cluster environment and scales well with large

atasets. 

.5. Availability 

The distributed implementation of the proposed approaches

nd the datasets are available to replicate the experiments at the

ollowing link: http://www.di.uniba.it/ ∼corizzo/gw . 

. Conclusion 

In this paper, we proposed two approaches to perform unsu-

ervised and supervised GWs detection directly from strain data

ollected in the form of time series, that require no manual effort

n pre-processing and noise removal steps. 

The results have shown that both approaches AE and AE-FE

utperform one-dimensional convolutional neural networks and

he Deep Filtering method. Moreover, AE is best suited when no

rior knowledge is available about the data distribution of GWs

henomena. This assumption is quite realistic, given the current

carce availability of labeled time series representing verified phe-

omena. In such case, the models, trained using different types

f noise, are sensitive to deviations from such data distributions,

nd therefore they are capable of detecting potentially interesting

ignals hidden in noisy time series, that may correspond to real

henomena. 
On the other hand, when knowledge about real GWs phenom-

na representing the positive class is available, the AE-FE approach,

hat involves classification models learned using features extracted

rom an auto-encoder, outperforms the AE approach. Specifically,

his method obtains the best detection performance when a phe-

omenon, already observed in the past, appears again in a newly

bserved time series. Additional experiments in the presence of

arying noise rates introduced in time series of whitened signals

ighlighted that the AE approach starts to degrade significantly

hen noise reaches 25% of the signal (or more), while the AE-FE

pproach is more robust to noise. 

However, the AE-FE approach assumes the availability of pos-

tive time series in order to train a supervised classifier on data

or two classes. Realistically, we assume that its near perfect pre-

ictive performance obtained in our experiments, is also subject

o degradation over time, in the case in which the morphology

f GWs changes significantly in newly observed time series never

een before. 

The proposed approaches implemented exploiting the Apache

park framework primitives, also exhibit good scalability perfor-

ances when operating with large-scale data and, therefore, are

articularly suited for analytic tasks involving GWs time series,

hat are produced at a high volume. 

For future work, we aim to extend our study addressing the

litch classification task with time series data. Moreover, we aim

o investigate alternative neural network architectures, specifically

ptimized for the detection task. 
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e proposed methods (AE, AE-FE), considering different 

engths. Best results in terms of F-Score are marked in 

gth 

3 secs 

ecall F-Score Precision Recall F-Score 

.9928 0.9933 0.5474 0.6928 0.5960 

.9928 0.9933 0.5541 0.6928 0.6019 

ecall F-Score Precision Recall F-Score 

.9928 0.9932 0.8474 0.8928 0.8628 

.9928 0.9932 0.2533 0.500 0.3360 

ecall F-Score Precision Recall F-Score 

.9928 0.9932 0.5541 0.6928 0.6019 

.9928 0.9932 0.5533 0.7000 0.6027 

ecall F-Score Precision Recall F-Score 

.9928 0.9932 0.8407 0.8928 0.8569 

.9928 0.9932 0.6888 0.7857 0.7196 

ecall F-Score Precision Recall F-Score 

.7857 0.7196 0.9941 0.9928 0.9932 

ecall F-Score Precision Recall F-Score 

.9933 0.9933 0.9824 0.9800 0.9801 

.9400 0.9444 0.9823 0.9800 0.9801 

.9933 0.9934 0.9938 0.9933 0.9933 

.9933 0.9933 0.9938 0.9933 0.9933 

ecall F-Score Precision Recall F-Score 

.9857 0.9864 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

.9857 0.9864 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

ecall F-Score Precision Recall F-Score 

 1 1 1 1 

.9933 0.9933 1 1 1 

.9933 0.9933 0.9937 0.9933 0.9933 

.9933 0.9933 1 1 1 

ecall F-Score Precision Recall F-Score 

 1 1 1 1 

.9929 0.9933 1 1 1 

.9929 0.9933 0.9941 0.9929 0.9933 

.9929 0.9933 1 1 1 

ecall F-Score Precision Recall F-Score 

.9929 0.9933 1 1 1 

.9929 0.9933 1 1 1 

.9929 0.9933 0.9941 0.9929 0.9933 

.9929 0.9933 1 1 1 

ecall F-Score Precision Recall F-Score 

.9866 0.9866 1 1 1 

.9866 0.9866 1 1 1 

.9929 0.9933 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

ecall F-Score Precision Recall F-Score 

.9929 0.9933 1 1 1 

.9929 0.9933 1 1 1 

.9929 0.9933 1 1 1 

.9929 0.9933 1 1 1 
Appendix A. Additional experimental results 

Table 7 

Experimental results with the GW1 dataset for th

model architectures, noise rates and time series l

bold. 

Time series len

Method 1 sec 

Conv1D optimized 

Dropout: 0.1 Precision R

512 dense units 0.9941 0

1024 dense units 0.9941 0

Dropout: 0.3 Precision R

512 dense units 0.9941 0

1024 dense units 0.9941 0

Conv1D (2) optimized 

Dropout: 0.1 Precision R

512 - 256 dense units 0.9941 0

1024 - 512 dense units 0.9941 0

Dropout: 0.3 Precision R

512 - 256 dense units 0.9941 0

1024 - 512 dense units 0.9941 0

Deep Filtering optimized Precision R

0.6888 0

Proposed method (AE) Precision R

1 hidden layer - 512 units 0.9938 0

2 hidden layers - 512 units 0.9737 0

1 hidden layer - 1024 units 0.9938 0

2 hidden layers - 1024 units 0.9938 0

Proposed method (AE-LR) Precision R

1 hidden layer - 512 units 0.9889 0

2 hidden layers - 512 units 0.9941 0

1 hidden layer - 1024 units 0.9889 0

2 hidden layers - 1024 units 0.9941 0

Proposed method (AE-GBT) Precision R

1 hidden layer - 512 units 1 1

2 hidden layers - 512 units 0.9938 0

1 hidden layer - 1024 units 0.9938 0

2 hidden layers - 1024 units 0.9938 0

Proposed method (AE-ERT) Precision R

1 hidden layer - 512 units 1 1

2 hidden layers - 512 units 0.9941 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9941 0

Proposed method (AE-RF) Precision R

1 hidden layer - 512 units 0.9941 0

2 hidden layers - 512 units 0.9941 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9941 0

Proposed method (AE-XGB) Precision R

1 hidden layer - 512 units 0.9875 0

2 hidden layers - 512 units 0.9875 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9941 0

Proposed method (AE-SVM) Precision R

1 hidden layer - 512 units 0.9941 0

2 hidden layers - 512 units 0.9941 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9941 0
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 rate: 10%) for the proposed methods (AE, AE-FE), con- 

and time series lengths. Best results in terms of F-Score 

gth 

3 secs 

ecall F-Score Precision Recall F-Score 

.9786 0.9797 0.8355 0.8857 0.8501 

.6786 0.5822 0.5363 0.6786 0.5824 

ecall F-Score Precision Recall F-Score 

.8786 0.8433 0.5230 0.6786 0.5706 

.8857 0.8502 0.6874 0.7928 0.7205 

ecall F-Score Precision Recall F-Score 

.9785 0.9796 0.8474 0.8928 0.8628 

.9714 0.9726 0.8363 0.8785 0.8492 

ecall F-Score Precision Recall F-Score 

.9785 0.9796 0.9783 0.9714 0.9726 

.9785 0.9796 0.9830 0.9785 0.9796 

ecall F-Score Precision Recall F-Score 

.7000 0.6109 0.6874 0.7928 0.7205 

ecall F-Score Precision Recall F-Score 

.9733 0.9735 0.9762 0.9733 0.9735 

.9733 0.9735 0.9762 0.9733 0.9735 

.9733 0.9735 0.9762 0.9733 0.9735 

.9000 0.9038 0.9699 0.9666 0.9668 

ecall F-Score Precision Recall F-Score 

.9643 0.9662 0.9941 0.9929 0.9933 

.9714 0.9730 0.9941 0.9929 0.9933 

.9500 0.9526 0.9941 0.9929 0.9933 

.9786 0.9798 0.9941 0.9929 0.9933 

ecall F-Score Precision Recall F-Score 

.9933 0.9933 0.9814 0.9800 0.9800 

.9866 0.9866 0.9875 0.9866 0.9867 

.9800 0.9800 0.9714 0.9666 0.9668 

.9733 0.9734 0.9814 0.9800 0.9800 

ecall F-Score Precision Recall F-Score 

.9786 0.9798 0.9941 0.9929 0.9933 

.9786 0.9797 0.9941 0.9929 0.9933 

.9857 0.9865 0.9941 0.9929 0.9933 

.9857 0.9865 0.9941 0.9929 0.9933 

ecall F-Score Precision Recall F-Score 

.9929 0.9933 0.9941 0.9929 0.9933 

.9857 0.9865 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

.9857 0.9865 0.9941 0.9929 0.9933 

ecall F-Score Precision Recall F-Score 

.9929 0.9933 0.9675 0.9670 0.9666 

.9661 0.9664 0.9755 0.9723 0.9730 

.9607 0.9596 0.9882 0.9857 0.9865 

.9670 0.9665 0.9866 0.9866 0.9866 

ecall F-Score Precision Recall F-Score 

.9929 0.9933 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

.9929 0.9933 0.9941 0.9929 0.9933 

.9866 0.9866 0.9941 0.9929 0.9933 
Table 8 

Experimental results with the GW2 dataset (noise

sidering different model architectures, noise rates 

are marked in bold. 

Noise rate Time series len

10% 1 sec 

Conv1D optimized 

Dropout: 0.1 Precision R

512 dense units 0.9830 0

1024 dense units 0.5375 0

Dropout: 0.3 Precision R

512 dense units 0.8297 0

1024 dense units 0.8349 0

Conv1D (2) optimized 

Dropout: 0.1 Precision R

512 - 256 dense units 0.9830 0

1024 - 512 dense units 0.9783 0

Dropout: 0.3 Precision R

512 - 256 dense units 0.9830 0

1024 - 512 dense units 0.9830 0

Deep Filtering optimized Precision R

0.6492 0

Proposed method (AE) Precision R

1 hidden layer - 512 units 0.9762 0

2 hidden layers - 512 units 0.9762 0

1 hidden layer - 1024 units 0.9762 0

2 hidden layers - 1024 units 0.9302 0

Proposed method (AE-LR) Precision R

1 hidden layer - 512 units 0.9712 0

2 hidden layers - 512 units 0.9771 0

1 hidden layer - 1024 units 0.9601 0

2 hidden layers - 1024 units 0.9824 0

Proposed method (AE-GBT) Precision R

1 hidden layer - 512 units 0.9937 0

2 hidden layers - 512 units 0.9866 0

1 hidden layer - 1024 units 0.9805 0

2 hidden layers - 1024 units 0.9751 0

Proposed method (AE-ERT) Precision R

1 hidden layer - 512 units 0.9824 0

2 hidden layers - 512 units 0.9830 0

1 hidden layer - 1024 units 0.9882 0

2 hidden layers - 1024 units 0.9882 0

Proposed method (AE-RF) Precision R

1 hidden layer - 512 units 0.9941 0

2 hidden layers - 512 units 0.9882 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9882 0

Proposed method (AE-XGB) Precision R

1 hidden layer - 512 units 0.9941 0

2 hidden layers - 512 units 0.9680 0

1 hidden layer - 1024 units 0.9667 0

2 hidden layers - 1024 units 0.9665 0

Proposed method (AE-SVM) Precision R

1 hidden layer - 512 units 0.9941 0

2 hidden layers - 512 units 0.9941 0

1 hidden layer - 1024 units 0.9941 0

2 hidden layers - 1024 units 0.9875 0
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 rate: 25%) for the proposed methods (AE, AE-FE), con- 

and time series lengths. Best results in terms of F-Score 

gth 

3 secs 

ecall F-Score Precision Recall F-Score 

.7964 0.7505 0.6842 0.7786 0.7126 

.7991 0.7391 0.5311 0.6750 0.5760 

ecall F-Score Precision Recall F-Score 

.9411 0.9390 0.6698 0.7741 0.7005 

.8857 0.8501 0.5533 0.700 0.6027 

ecall F-Score Precision Recall F-Score 

.8848 0.8565 0.9718 0.9642 0.9661 

.9785 0.9796 0.7007 0.7928 0.7323 

ecall F-Score Precision Recall F-Score 

.9785 0.9796 0.9783 0.9714 0.9726 

.9785 0.9796 0.5249 0.6714 0.5695 

ecall F-Score Precision Recall F-Score 

.7785 0.7188 0.8355 0.8857 0.8500 

ecall F-Score Precision Recall F-Score 

.7067 0.7471 0.9051 0.6066 0.6846 

.7000 0.7469 0.8936 0.5866 0.6688 

.6466 0.6987 0.9031 0.6133 0.6884 

.6600 0.7260 0.9031 0.6133 0.6884 

ecall F-Score Precision Recall F-Score 

.9408 0.9430 0.9765 0.9717 0.9730 

.9420 0.9435 0.9679 0.9661 0.9665 

.9318 0.9342 0.9743 0.9693 0.9707 

.9464 0.9482 0.9666 0.9631 0.9641 

ecall F-Score Precision Recall F-Score 

.9733 0.9733 0.9762 0.9733 0.9735 

.9600 0.9600 0.9876 0.9866 0.9867 

.9933 0.9933 0.9742 0.9733 0.9733 

.9466 0.9470 0.9546 0.9533 0.9533 

ecall F-Score Precision Recall F-Score 

.9598 0.9617 0.9828 0.9786 0.9797 

.9488 0.9503 0.9790 0.9771 0.9776 

.9595 0.9615 0.9826 0.9786 0.9798 

.9557 0.9572 0.9615 0.9595 0.9598 

ecall F-Score Precision Recall F-Score 

.9714 0.9730 0.9838 0.9813 0.9821 

.9494 0.9505 0.9745 0.9726 0.9731 

.9693 0.9708 0.9820 0.9789 0.9798 

.9536 0.9550 0.9572 0.9551 0.9553 

ecall F-Score Precision Recall F-Score 

.9592 0.9597 0.9546 0.9533 0.9530 

.9262 0.9260 0.9548 0.9524 0.9529 

.9551 0.9552 0.9723 0.9702 0.9709 

.9304 0.9306 0.9503 0.9494 0.9487 

ecall F-Score Precision Recall F-Score 

.9815 0.9821 0.9902 0.9881 0.9888 

.9473 0.9482 0.9745 0.9726 0.9731 

.9815 0.9821 0.9863 0.9833 0.9843 

.9542 0.9551 0.9701 0.9682 0.9687 
Table 9 

Experimental results with the GW2 dataset (noise

sidering different model architectures, noise rates 

are marked in bold. 

Noise rate Time series len

25% 1 sec 

Conv1D optimized 

Dropout: 0.1 Precision R

512 dense units 0.8783 0

1024 dense units 0.7833 0

Dropout: 0.3 Precision R

512 dense units 0.9530 0

1024 dense units 0.8355 0

Conv1D (2) optimized 

Dropout: 0.1 Precision R

512 - 256 dense units 0.9312 0

1024 - 512 dense units 0.9830 0

Dropout: 0.3 Precision R

512 - 256 dense units 0.9830 0

1024 - 512 dense units 0.9830 0

Deep Filtering optimized Precision R

0.6896 0

Proposed method (AE) Precision R

1 hidden layer - 512 units 0.8903 0

2 hidden layers - 512 units 0.8974 0

1 hidden layer - 1024 units 0.8828 0

2 hidden layers - 1024 units 0.9105 0

Proposed method (AE-LR) Precision R

1 hidden layer - 512 units 0.9541 0

2 hidden layers - 512 units 0.9510 0

1 hidden layer - 1024 units 0.9451 0

2 hidden layers - 1024 units 0.9538 0

Proposed method (AE-GBT) Precision R

1 hidden layer - 512 units 0.9759 0

2 hidden layers - 512 units 0.9626 0

1 hidden layer - 1024 units 0.9937 0

2 hidden layers - 1024 units 0.9514 0

Proposed method (AE-ERT) Precision R

1 hidden layer - 512 units 0.9669 0

2 hidden layers - 512 units 0.9564 0

1 hidden layer - 1024 units 0.9683 0

2 hidden layers - 1024 units 0.9620 0

Proposed method (AE-RF) Precision R

1 hidden layer - 512 units 0.9769 0

2 hidden layers - 512 units 0.9548 0

1 hidden layer - 1024 units 0.9744 0

2 hidden layers - 1024 units 0.9595 0

Proposed method (AE-XGB) Precision R

1 hidden layer - 512 units 0.9622 0

2 hidden layers - 512 units 0.9282 0

1 hidden layer - 1024 units 0.9594 0

2 hidden layers - 1024 units 0.9321 0

Proposed method (AE-SVM) Precision R

1 hidden layer - 512 units 0.9832 0

2 hidden layers - 512 units 0.9536 0

1 hidden layer - 1024 units 0.9832 0

2 hidden layers - 1024 units 0.9586 0
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ate: 50%) for the proposed methods (AE, AE-FE), consid- 

 time series lengths. Best results in terms of F-Score are 

th 

3 secs 

call F-Score Precision Recall F-Score 

5303 0.3962 0.6081 0.6920 0.6102 

4991 0.3334 0.5274 0.6643 0.5682 

call F-Score Precision Recall F-Score 

7884 0.7493 0.3822 0.5857 0.4469 

8786 0.8470 0.2467 0.500 0.3300 

call F-Score Precision Recall F-Score 

9642 0.9659 0.9724 0.9642 0.9659 

9339 0.9319 0.6357 0.6991 0.5974 

call F-Score Precision Recall F-Score 

8785 0.8430 0.8422 0.8857 0.8559 

8651 0.8358 0.6783 0.7714 0.7058 

call F-Score Precision Recall F-Score 

6428 0.5427 0.7490 0.7419 0.6782 

call F-Score Precision Recall F-Score 

4933 0.5994 0.8759 0.5000 0.6021 

4933 0.5994 0.8759 0.5000 0.6021 

4933 0.5994 0.8759 0.5000 0.6021 

4933 0.5994 0.8759 0.5000 0.6021 

call F-Score Precision Recall F-Score 

9080 0.9101 0.9466 0.9366 0.9392 

8973 0.8983 0.9279 0.9259 0.9263 

9027 0.9043 0.9518 0.9438 0.9460 

9170 0.9188 0.9284 0.9250 0.9261 

call F-Score Precision Recall F-Score 

9466 0.9468 0.9814 0.9800 0.9800 

9600 0.9602 0.9875 0.9866 0.9866 

97333 0.9734 0.9552 0.9466 0.9474 

8800 0.8809 0.9813 0.9800 0.9800 

call F-Score Precision Recall F-Score 

9366 0.9390 0.9601 0.9500 0.9526 

9098 0.9116 0.9556 0.9518 0.9530 

9357 0.9384 0.9654 0.9571 0.9595 

9232 0.9254 0.9296 0.9259 0.9263 

call F-Score Precision Recall F-Score 

9500 0.9526 0.9631 0.9580 0.9597 

9170 0.9188 0.9420 0.9384 0.9395 

9438 0.9460 0.9578 0.9509 0.9528 

9232 0.9254 0.9237 0.9196 0.9196 

call F-Score Precision Recall F-Score 

9188 0.9195 0.9288 0.9259 0.9259 

8848 0.8852 0.9150 0.9116 0.9127 

9241 0.9259 0.9479 0.9455 0.9463 

8848 0.8856 0.9095 0.9071 0.9063 

call F-Score Precision Recall F-Score 

9589 0.9597 0.9824 0.9786 0.9798 

9098 0.9121 0.9345 0.9321 0.9329 

9589 0.9597 0.9765 0.9714 0.9731 

9241 0.9257 0.9377 0.9313 0.9327 
Table 10 

Experimental results with the GW2 dataset (noise r

ering different model architectures, noise rates and

marked in bold. 

Noise rate Time series leng

50% 1 sec 

Conv1D optimized 

Dropout: 0.1 Precision Re

512 dense units 0.5982 0.

1024 dense units 0.2898 0.

Dropout: 0.3 Precision Re

512 dense units 0.8491 0.

1024 dense units 0.8330 0.

Conv1D (2) optimized 

Dropout: 0.1 Precision Re

512 - 256 dense units 0.9724 0.

1024 - 512 dense units 0.9483 0.

Dropout: 0.3 Precision Re

512 - 256 dense units 0.8308 0.

1024 - 512 dense units 0.8229 0.

Deep Filtering optimized Precision Re

0.5200 0.

Proposed method (AE) Precision Re

1 hidden layer - 512 units 0.8787 0.

2 hidden layers - 512 units 0.8787 0.

1 hidden layer - 1024 units 0.8787 0.

2 hidden layers - 1024 units 0.8787 0.

Proposed method (AE-LR) Precision Re

1 hidden layer - 512 units 0.9310 0.

2 hidden layers - 512 units 0.9098 0.

1 hidden layer - 1024 units 0.9198 0.

2 hidden layers - 1024 units 0.9265 0.

Proposed method (AE-GBT) Precision Re

1 hidden layer - 512 units 0.9511 0.

2 hidden layers - 512 units 0.9628 0.

1 hidden layer - 1024 units 0.9743 0.

2 hidden layers - 1024 units 0.8916 0.

Proposed method (AE-ERT) Precision Re

1 hidden layer - 512 units 0.9471 0.

2 hidden layers - 512 units 0.9223 0.

1 hidden layer - 1024 units 0.9512 0.

2 hidden layers - 1024 units 0.9341 0.

Proposed method (AE-RF) Precision Re

1 hidden layer - 512 units 0.9601 0.

2 hidden layers - 512 units 0.9265 0.

1 hidden layer - 1024 units 0.9526 0.

2 hidden layers - 1024 units 0.9341 0.

Proposed method (AE-XGB) Precision Re

1 hidden layer - 512 units 0.9228 0.

2 hidden layers - 512 units 0.8900 0.

1 hidden layer - 1024 units 0.9307 0.

2 hidden layers - 1024 units 0.8884 0.

Proposed method (AE-SVM) Precision Re

1 hidden layer - 512 units 0.9613 0.

2 hidden layers - 512 units 0.9200 0.

1 hidden layer - 1024 units 0.9613 0.

2 hidden layers - 1024 units 0.9321 0.
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e pro

results

gth 

ecall 

.6135

.5395

ecall 

.5374

.5972

ecall 

.5652

.5940

ecall 

.5499

.5700

ecall 

.5020

ecall 

.4693

.4285

.4693

.4489

ecall 

.6764

.6819

.6597

.6181

ecall 

.6020

.5867

.6020

.6428

ecall 

.6931

.7104

.7139

.6875

ecall 

.7042

.7208

.7111

.6806

ecall 

.6972

.6931

.6972

.6750

ecall 

.6917

.7028

.6639

.6486
Table 11 

Experimental results with the GW3 dataset for th

model architectures and time series lengths. Best 

Time series len

Method 1 sec 

Conv1D optimized 

Dropout: 0.1 Precision R

512 dense units 0.5553 0

1024 dense units 0.4948 0

Dropout: 0.3 Precision R

512 dense units 0.5671 0

1024 dense units 0.6145 0

Conv1D (2) optimized 

Dropout: 0.1 Precision R

512 - 256 dense units 0.5264 0

1024 - 512 dense units 0.7059 0

Dropout: 0.3 Precision R

512 - 256 dense units 0.5390 0

1024 - 512 dense units 0.5372 0

Deep Filtering optimized Precision R

0.3344 0

Proposed method (AE) Precision R

1 hidden layer - 512 units 1 0

2 hidden layers - 512 units 0.7782 0

1 hidden layer - 1024 units 0.9793 0

2 hidden layers - 1024 units 0.8818 0

Proposed method (AE-LR) Precision R

1 hidden layer - 512 units 0.6836 0

2 hidden layers - 512 units 0.6945 0

1 hidden layer - 1024 units 0.6290 0

2 hidden layers - 1024 units 0.5936 0

Proposed method (AE-GBT) Precision R

1 hidden layer - 512 units 0.6828 0

2 hidden layers - 512 units 0.6139 0

1 hidden layer - 1024 units 0.6687 0

2 hidden layers - 1024 units 0.6630 0

Proposed method (AE-ERT) Precision R

1 hidden layer - 512 units 0.7065 0

2 hidden layers - 512 units 0.7161 0

1 hidden layer - 1024 units 0.7243 0

2 hidden layers - 1024 units 0.7054 0

Proposed method (AE-RF) Precision R

1 hidden layer - 512 units 0.7112 0

2 hidden layers - 512 units 0.7203 0

1 hidden layer - 1024 units 0.7203 0

2 hidden layers - 1024 units 0.6963 0

Proposed method (AE-XGB) Precision R

1 hidden layer - 512 units 0.6970 0

2 hidden layers - 512 units 0.6969 0

1 hidden layer - 1024 units 0.7031 0

2 hidden layers - 1024 units 0.6820 0

Proposed method (AE-SVM) Precision R

1 hidden layer - 512 units 0.7040 0

2 hidden layers - 512 units 0.7063 0

1 hidden layer - 1024 units 0.6234 0

2 hidden layers - 1024 units 0.6737 0
posed methods (AE, AE-FE), considering different 

 in terms of F-Score are marked in bold. 

3 secs 

F-Score Precision Recall F-Score 

 0.5622 0.2500 0.5000 0.3330 

 0.4884 0.2653 0.5000 0.3466 

F-Score Precision Recall F-Score 

 0.5202 0.5668 0.5608 0.4975 

 0.5889 0.5069 0.5791 0.5061 

F-Score Precision Recall F-Score 

 0.4566 0.6027 0.5702 0.5522 

 0.5463 0.4250 0.4966 0.3898 

F-Score Precision Recall F-Score 

 0.4869 0.6764 0.6262 0.6096 

 0.5211 0.5576 0.5976 0.5521 

F-Score Precision Recall F-Score 

 0.3911 0.3704 0.5344 0.4155 

F-Score Precision Recall F-Score 

 0.6388 0.9474 0.4897 0.6292 

 0.5409 0.7954 0.4183 0.5375 

 0.6302 0.8994 0.4744 0.6040 

 0.5854 0.8897 0.4285 0.5590 

F-Score Precision Recall F-Score 

 0.6744 0.7935 0.7597 0.7629 

 0.6795 0.6458 0.6194 0.5881 

 0.6342 0.7984 0.7778 0.7797 

 0.5866 0.7744 0.7583 0.7607 

F-Score Precision Recall F-Score 

 0.6256 0.6125 0.5663 0.5789 

 0.5925 0.6800 0.6479 0.6559 

 0.6192 0.6910 0.6173 0.6353 

 0.6464 0.6917 0.6326 0.6481 

F-Score Precision Recall F-Score 

 0.6938 0.8130 0.7771 0.7805 

 0.7090 0.6847 0.6181 0.5804 

 0.7144 0.8266 0.7917 0.7947 

 0.6855 0.7482 0.7375 0.7355 

F-Score Precision Recall F-Score 

 0.7021 0.7846 0.7597 0.7598 

 0.7160 0.6697 0.6111 0.5730 

 0.7106 0.8167 0.7875 0.7877 

 0.6809 0.7444 0.7361 0.7345 

F-Score Precision Recall F-Score 

 0.6918 0.8236 0.8194 0.8194 

 0.6916 0.6456 0.6083 0.5806 

 0.6969 0.8177 0.8069 0.8063 

 0.6684 0.7077 0.6986 0.6980 

F-Score Precision Recall F-Score 

 0.6932 0.7776 0.7653 0.7666 

 0.7021 0.6723 0.6375 0.6105 

 0.6354 0.8176 0.7917 0.7934 

 0.6403 0.7869 0.7653 0.7683 
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Table 12 

Wilcoxon Signed Rank Tests (all datasets). Bold: improve- 

ment is statistically significant when the p-value is smaller 

than 0.01. 

Pairwise comparison p -value winner 

RMSE criterion 

Conv1D vs AE 4.54E-06 AE 

Conv1D (2) vs AE 9.80E-02 Conv1D (2) 

Deep Filtering vs AE 1.82E-06 AE 

Conv1D vs AE-LR 1.18E-13 AE-LR 

Conv1D (2) vs AE-LR 1.21E-06 AE-LR 

AE vs AE-LR 5.26E-12 AE-LR 

Deep Filtering vs AE-LR 7.85E-15 AE-LR 

Conv1D vs AE-GBT 2.46E-14 AE-GBT 

Conv1D (2) vs AE-GBT 3.87E-10 AE-GBT 

AE vs AE-GBT 1.27E-11 AE-GBT 

Deep Filtering vs AE-GBT 7.85E-15 AE-GBT 

Conv1D vs AE-ERT 3.61E-14 AE-ERT 

Conv1D (2) vs AE-ERT 1.97E-09 AE-ERT 

AE vs AE-ERT 4.06E-14 AE-ERT 

Deep Filtering vs AE-ERT 7.85E-15 AE-ERT 

Conv1D vs AE-RF 3.61E-14 AE-RF 

Conv1D (2) vs AE-RF 3.99E-10 AE-RF 

AE vs AE-RF 8.74E-14 AE-RF 

Deep Filtering vs AE-RF 7.85E-15 AE-RF 

Conv1D vs AE-XGB 3.93E-14 AE-XGB 

Conv1D (2) vs AE-XGB 7.99E-06 AE-XGB 

AE vs AE-XGB 2.02E-12 AE-XGB 

Deep Filtering vs AE-XGB 7.85E-15 AE-XGB 

Conv1D vs AE-SVM 3.61E-14 AE-SVM 

Conv1D (2) vs AE-SVM 1.45E-11 AE-SVM 

AE vs AE-SVM 4.06E-14 AE-SVM 

Deep Filtering vs AE-SVM 7.85E-15 AE-SVM 
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