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Abstract: Air pollution is becoming a rising and serious environmental problem, especially in urban
areas affected by an increasing migration rate. The large availability of sensor data enables the
adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates
air pollution monitoring, but the lack of predictive capability limits such systems’ potential in
practical scenarios. On the other hand, forecasting methods offer the opportunity to predict the
future pollution in specific areas, potentially suggesting useful preventive measures. To date,
many works tackled the problem of air pollution forecasting, most of which are based on sequence
models. These models are trained with raw pollution data and are subsequently utilized to make
predictions. This paper proposes a novel approach evaluating four different architectures that utilize
camera images to estimate the air pollution in those areas. These images are further enhanced
with weather data to boost the classification accuracy. The proposed approach exploits generative
adversarial networks combined with data augmentation techniques to mitigate the class imbalance
problem. The experiments show that the proposed method achieves robust accuracy of up to 0.88,
which is comparable to sequence models and conventional models that utilize air pollution data.
This is a remarkable result considering that the historic air pollution data is directly related to the
output—future air pollution data, whereas the proposed architecture uses camera images to recognize
the air pollution—which is an inherently much more difficult problem.

Keywords: air pollution prediction; smart city; deep learning; convolutional neural networks;
generative adversarial networks

1. Introduction

Air pollution represents a major issue in modern society, especially with the increasing migrations
into urban areas. As a result, many efforts are directed towards building successful monitoring systems,
including sensors and cameras, which collect data continuously.

According to the authors of [1], 70% of the world’s population will live in urban centers by 2050,
which means that efficient solutions are required to monitor and predict air pollution. As stated in [2],
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North America and Australia are the least polluted regions, followed by Central Europe, while India
and Asia exhibit the highest air pollution. Even if not much information is available for South America
and Africa, the limited available data suggest that air pollution levels are high in these areas as well.
The main cause of death for children under the age of 15 is air pollution, with 600,000 deaths every
year, according to a report done by the World Health Organization [3]. Based on research done
in [4], air pollution contributes towards 7 million deaths a year, and 92% of the world’s population
is breathing toxic air. In less developed countries, 98% of children under five years old breathe toxic
air. In financial terms, premature deaths due to air pollution cost about $5 trillion in welfare losses
worldwide [5].

In recent years, the Internet of Things (IoT) paradigm has emerged, empowering objects of
everyday life with microcontrollers, transceivers for digital communication, and a suitable protocol
stack, which enables them to communicate with one another and with the users, becoming an integral
part of the Internet [6]. Thanks to this addition, devices such as home appliances, surveillance cameras,
sensors, and vehicles can generate enormous amounts of various data that can be subsequently
analyzed and used to develop new applications. Recent advances in IoT technologies have allowed
people to develop efficient systems consisting of multiple sensors connected wirelessly, either by
Bluetooth or WiFi for nearby regions, or mobile networks and satellite for remote regions to monitor the
different air pollutants in different regions. These volumes of diverse data might need parallelization
using big data and cloud computing technologies to be able to analyze emerging patterns [7],
and facilitate near real-time monitoring. Monitoring systems allow us to collect quality data, which can
then be used to extract deeper knowledge about pollution [8,9].

Air pollution forecasting systems enable us to predict the Air Quality Index (AQI), the value
of each pollutant, such as particle matter (PM) or carbon dioxide concentration (i.e., PM2.5, PM10,
CO2, etc.), and recognize high-pollution areas. Predictive air pollution systems can help governments
employ smarter solutions and preventive measures to address air quality problems. Although many
solutions and models for predicting air pollution have been proposed in the literature, they generally
can be classified into two categories. The first category is models for tracking the generation, dispersion,
and transmission process of pollutants. Numerical simulations generate the predictive results of these
models. The second category includes statistical learning models, machine learning, and deep learning
models. These models attempt to extract patterns directly from the input data, learning from the data
distribution [10].

Recent advances in deep learning techniques and the high amount of data available have inspired
many authors to develop and implement different prediction models, as discussed in more details in
the related work section [10–17]. Nevertheless, the results achieved in the literature are not conclusive.
Therefore, air pollution prediction remains an important and active area of research. In particular,
the exploitation of images for air pollution prediction task remains an unexplored area and require
more attention.

High-quality predictions in this domain are important due to their impact on the everyday life of
citizens. In particular, knowing in advance about high-pollution events can result in initiatives such
as traffic reduction policies, closure of public venues including schools, as well as recommendations
to limit exposure for sensitive people. In turn, high-quality predictions require proper detection
techniques that are tailored to the problem at hand and can address inherent challenges such as the
ability to handle class imbalance and exploit multimodal data.

This paper proposes a novel approach based on convolutional neural networks (CNNs) that
exploit camera images for predicting air pollution. The motivation to use camera images instead of
air pollution sensors is because of the immense IoT infrastructure consisting of security and traffic
light cameras, even in developing countries where air pollution sensors are sparse. An air pollution
estimation approach based on cameras can facilitate generating a real-time heat-map of air pollution
and tracking pollution sources.
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We propose and evaluate four architectures for classifying images and show that using generative
approaches enhanced with standard data augmentation methods for handling imbalanced datasets
leads to better performance than state-of-the-art methods. Most air pollution methods rely on
raw or processed air pollution data, such as historic sensory measurements of pollutants [10–17].
Differently than existing approaches in the literature, the novelty of our work stands in the exploitation
of generative adversarial neural networks combined with data augmentation techniques, as well as the
adoption of multi-modal data consisting of sensor measurements and camera images. Combining these
aspects allows us to tackle challenges related to the predictive task, including the presence of class
imbalanced data, the partial and potentially noisy information deriving from a single source of data,
and the exposure to adversarial attacks. As a result, the resulting predictive model appears more
robust and accurate than existing solutions in the literature.

The remainder of this paper is organized as follows. Section 2 presents related work for handling
the problem of air pollution prediction. The architecture of the proposed models and the evaluated
data augmentation techniques are explained in Section 3. In Section 4, we provide the evaluation
results of our models and in Section 5 we discuss them. Finally, Section 6 concludes the paper and
proposes promising future work directions.

2. Related Work

In Section 2.1 we first cover deep learning approaches for classification in remote sensing context.
Then, in Sections 2.2 and 2.3 we describe the recent approaches for mitigating the class imbalance
challenge in image data and more specifically in remote sensing problems. Furthermore, we highlight
how the proposed method differs from the existing approaches. Finally, in Section 2.4 we review the
recent approaches for air pollution prediction.

2.1. Deep Learning Classification in Remote Sensing

Transfer learning appears successful in classification tasks involving remote sensing data.
One such example is presented in [18], which investigates a simple and effective transfer learning
strategy that uses unsupervised pre-training step without label information. This capability is
confirmed in other studies as in [19], which shows how CNNs perform when applied under operational
emergency conditions, with unseen data and time constraints, in the context of automated building
damage assessment. Similarly, transfer learning has been successfully adopted in different studies
focusing on aerial scene classification [20,21], where fine-tuning and adaptive learning rates are
proposed. The fine-tuned neural networks are subsequently used for feature extraction and remote
sensing image classification with a Support Vector Machine (SVM) model with linear and Radial Basis
Function (RBF) kernels. However, approaches based on transfer learning, which leverage pre-trained
deep neural networks to perform classification of new datasets, appear unreliable in the presence of
class imbalanced datasets. This behavior was shown in [22], where the goal was to detect invasive
blueberry species in aerial images of wetlands. The authors showed that their pre-trained network
achieved a general high classification accuracy while largely ignoring the blueberry class, thus failing
in the study’s main goal. For this reason, custom approaches to mitigate class imbalanced data
are required.

2.2. Imbalanced Data in Remote Sensing

A sampling-based approach was proposed in [23], where a case-control mechanism was adopted
to select a large fraction of pixels with the outcome of interest. This approach has shown considerably
better inference and prediction than random sampling. A different data augmentation approach was
used in [24], where the authors includes depth of sampling as a covariate to perform a national
scale 3D mapping of soil pH. Another approach based on hybrid data balancing called Partial
Random Over-Sampling and Random Under-Sampling was investigated in [25]. This study applied it
successfully in an unbalanced dataset for the classification of Google Earth images in mountainous
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regions. An ensemble-based method to handle imbalanced data in the context of land cover mapping
is proposed in [26]. In this study, the authors integrate random under-sampling of majority classes and
an ensemble of Support Vector Machines. A multi-scale feature fusion approach was presented in [27],
where the authors proposed a fully convolutional neural network called DeepLab V3+, which loss
function gives increased weights to imbalanced samples. On the same thread of approaches, Ref. [28]
proposed a dual-attention capsule U-Net (DA-CapsUNet) for road region extraction, which combines
the properties of capsule representations and attention mechanisms intending to increase the robustness
of the model. Feature extraction approaches are proposed in [29] where the authors extract ship features
of different levels and propose fusing fine-grained features from shallow layers with semantic features
from deep layers to detect ship targets with different sizes.

2.3. Imbalanced Data in Images

Image classification datasets are often imbalanced, which negatively affects the accuracy of most
classifiers. To mitigate this problem, many strategies have been proposed in the research community.

One of the most frequently used technique in the past was random oversampling and
undersampling [30]. With these approaches, in every training epoch, images from the minority
class are taken more frequently, or images from the majority class are taken with less frequency.

However, in recent years, more advanced techniques, such as Generative Adversarial Networks
(GAN), are gaining popularity. One such approach is explained in [31], where GAN is used to
balance the imbalanced image dataset. The model is first trained with the majority and minority
class. This allows the model to learn useful features from the majority class. In a subsequent phase,
these features and then used to generate images for minority classes.

Another interesting approach is explained in [32], where the authors exploit using GAN
architecture for Medical Image Augmentation in Liver Lesion Classification. They show that by using
the GAN architecture, they significantly improve the classifier’s performances. A similar approach
for chest x-ray generation is explained in [33], where the authors employ the GAN architecture to
generate new images. They explain that obtaining medical annotated images is difficult and show
that the classifier’s performance significantly benefits from the generative strategy. Another approach
showing the advantages of the GAN network is explained in [34], where the GAN architecture is used
in two brain segmentation tasks. The difference between our approach and the previously explained
approaches is that we use only the minority class to train the GAN architecture and then use this
trained GAN architecture to generate new images for the minority class, thus balancing the dataset.

2.4. Air Pollution Prediction

Recently, extensive research was devoted to air pollution prediction considering traditional
and deep learning approaches. While many different models have been proposed, they mainly
exploit pollution measurements collected from sensors at specific times and locations. The considered
pollutants are usually the particulate matter (i.e., PM2.5 and PM10) and gaseous species (i.e., NO2, CO,
O3, and SO2). Meteorological data such as humidity, temperature, wind speed, and rainfall are also
integrated, with some approaches even incorporating weather forecast data, as explained in [11,35].

The data preprocessing pipeline mainly consists of a feature extraction step, where the most
common approaches are Principal Component Analysis (PCA), cluster analysis, factor analysis,
and discriminant analysis. Data fusion is performed by leveraging simple techniques, such as matching
and aggregation by time and location, as well as interpolation. The modeling and the preprocessing
stages are usually executed separately, as explained in [10,14,15,35–37]. Still, some approaches
incorporate this stage of the feature analysis or interpolation directly into the model architecture [11,13].

A large number of methods available in the literature can be separated into two different categories.
The first category of methods are predicting the level of pollutants (such as PM2.5, PM10, NO2, etc.),
such as [9,10,12,15,36,38]. The second category consists of methods predicting the pollution level in
the form of Air Quality Index (AQI) or Air Pollution Index, such as [11,13,14,35]. The key difference
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between the two categories of methods stands in the labeling of the pollutant data. While methods
in the first category of methods do not require labeling since the purpose is to predict the actual
pollutant values, the second category of methods require labeling fine-grained data so it can be
used to train supervised classification algorithms. Recently, both types of models are based on
deep neural networks [11–13] or improvements of the classical fully-connected neural networks
such as Recurrent Neural Networks [10] (RNN) and Long Short-Term Memory (LSTM) networks,
as special types of RNN [14]. In addition, some approaches exploit autoencoder models [15,39],
sequence-to-sequence models [17], neural networks that combine linear predictors as ensembles [35],
Bayesian networks and multi-label classifiers [36]. Another interesting approach is explained in [40],
where an attention-based model is adopted. This approach’s attention mechanism is applied only on
the wind measurements to obtain an encoded value used as a data augmentation technique in the
main model. The [40,41] attention-based approaches are applied to all available weather and pollution
information. Some approaches combine the ideas of convolutional neural networks (CNN) to further
augment the performance of pollution prediction achieved by the RNN models [42–44]. The approaches
use different evaluation methods, but they generally adopt standard evaluation measures for regression,
such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Prediction Error (MPE), or Relative Prediction Error (RPE).

Although many deep learning approaches for air pollution prediction have been proposed in
the literature, most of them are based on using sequential pollution data coming from sensors to
make predictions. On the contrary, air pollution prediction approaches that leverage camera images
and CNNs are quite rare. To the best of our knowledge, only two studies investigated this direction.
The approach in [45] exploits satellite images and a deep-learning model based on a convolutional
neural network architecture to create pollution maps. Similarly to it, our models utilize deep learning
approaches but are trained on camera images instead of satellite images. Another approach is explained
in [46], where smartphone images are used to make a pollution estimation. The training is based only
on 1575 images, and the performance evaluation is with a synthetic dataset. Unlike this approach,
ours considers 178,992 images in the training and evaluation process.

3. Methods

This paper proposes a novel approach for air pollution prediction, leveraging the combination
of weather data and camera images, evaluating four different architectures. Namely, the input is
primarily based on cameras taken from a static camera placed at the Vodno mountain near Skopje,
North Macedonia. Next, we use the meteorological data taken from the nearest meteorological station.
The output is the predicted Air Quality Index, which is validated based on the nearest PM2.5 sensor
measurements. Note that the PM2.5 is used to generate labels for the data to facilitate supervised
learning and not as an input itself. The location of all sensors is shown in Figure 1. The workflow of
the proposed methodology is shown in Figure 2.

To the best of our knowledge, this is the first study that proposes adopting these two
data sources. Moreover, we employ transfer learning in two of the four evaluated architectures,
leveraging pre-trained models that are fine-tuned for air pollution prediction. The purpose of transfer
learning is to leverage the general knowledge of pre-trained networks, which implies the ability to
identify low-level features (such as vertical and horizontal lines), and to train the network further
using the target dataset to focus on task-specific features [20,47].

The remainder of this section is structured as follows. First, Section 3.1 describes the four
evaluated architectures. The architecture based on a convolutional neural network model is explained
in Section 3.1.1. The architecture of the Residual neural network is explained in Section 3.1.2.
The architecture of the basic Inception network, as well as our extended Inception network,
are explained in Section 3.1.3. Finally, the custom inception-based model is described in Section 3.1.4.

The second part of this section, Section 3.2, describes the different data pre-processing techniques
employed in the different architectures.
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Figure 1. Location of the camera, sensor, and weather station shown on the map of Skopje.

Weather data (input)

Pre-processing Model training

Sensory data
PM2.5 & PM10

(labels)

Predicted
class

Camera images
(input)

PressureWind RainTemperature

1. Basic CNN
2. Inception
3. ResNet

4. Custom Pretrained Inception

1. Random Oversampling and
Undersampling

2. Image augmentation
3. Conditional Generative

Adversarial Networks

Figure 2. Workflow of the proposed methodology for air pollution prediction.

3.1. Architectures of the Predictive Models

3.1.1. Basic Convolutional Neural Network Model

The main element of the basic convolutional neural network model is the convolution block,
which is shown in Figure 3. This block consists of three layers: two convolutional layers and one
max pooling layer. These blocks enable the model to learn the low-level features in the images while
allowing the upper layers to activate on higher-level features responsible for successful predictions.
A convolution layer is a simple application of a filter to an input that results in an activation.
Repeated application of the same filter to an input results in a map of activations called feature map,
indicating the locations and strength of a detected feature in the input. Consequently, the resulting
architecture is shown in Figure 4.

Pooling layers provide an approach for downsampling feature maps by summarizing features
in patches of the feature map. Two common pooling methods are average pooling and max pooling,
which summarize the average presence of a feature and the most activated presence of a feature,
respectively. The flatten layer is also commonly used, which receives the multidimensional input
from the convolution layers and flattens it to a one-dimensional input. Likewise, dense layers
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(fully connected layers) are regularly used to predict the image class based on one-dimensional
input. Although this model is much simpler and shallower than the other models, it still provides
significant classification capability, as shown in Section 4.

Convolution MaxpoolConvolution

Figure 3. Basic convolutional block.

Convolution

Convolution

Convolution

Convolution

Convolution

Flatten

Dense

Dense

Dense

Softmax

Figure 4. Basic convolutional neural network model architecture.

3.1.2. Residual Network Model

The main benefit of a very deep network is that it can represent very complex functions. It can
also learn features at many different abstraction levels, from edges (at the shallower layers, closer to
the input) to very complex features (at the deeper layers, closer to the output). However, very deep
neural networks are difficult to train because of the problem of vanishing gradient [48]. The vanishing
gradient problem occurs when the gradient is back-propagated to earlier layers, and the repeated
multiplication operations make the gradient infinitely small. As a result, as the network becomes
deeper, its performance saturates or even degrades rapidly. This problem inspired the residual network
(ResNet) [49], which allows robust deep convolutional neural networks to be built. The main idea
of the ResNet model is the residual blocks, whose architecture is shown in Figure 5. The residual
block provides two paths for the input: the main path and the shortcut (or more commonly known
as skip-path). The main path provides the normal flow as with any convolutional neural network.
Still, the shortcut skips N convolution layers (in our approach N = 2) and provides its input to the
following convolution layer. The authors in [49] argue that stacking layers should not degrade the
network performance because one could simply stack identity mappings (layers that learn the identity
mapping which ultimately does not make any change) upon the current network, and the resulting
architecture would perform equally. This indicates that the deeper model should not produce a training
error higher than its shallower counterparts. They hypothesize that letting the stacked layers fit a
residual mapping is easier than letting them directly fit the desired underlying mapping. The residual
block explicitly allows the model to perform this task.

Convolution Convolution Convolutionmain path

shortcut

Figure 5. Residual block.
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The basic residual block is also known as the identity block. This block corresponds to the case
where the input activation has the same dimension as the output activation. Apart from this block,
there is another block called the convolutional block. The architecture of this block is shown in Figure 6.
In this block, the input and output dimensions do not match. The difference between this block and
the identity block is that there is a convolutional layer in the shortcut path to match the dimensions.

Convolution Convolution Convolutionmain path

shortcut
Convolution

Figure 6. ResNet convolutional block.

The complete architecture of the ResNet model is shown in Figure 7. We can see that the model is
built using multiple convolutional and identity blocks. It also contains convolution and max pooling
layers at the beginning of the model, as well as flatten and dense layers at the end to make the final
prediction. We show in Section 4 that by using this model, we obtain better results, which can be
explained by the fact that we can use much deeper networks that can learn complex features and are
not affected by the problem of vanishing gradient.

2x5x3x2x

     Convolution
Maxpool
Softmax

Residual
Fully connected    

Figure 7. ResNet architecture [21].

3.1.3. Inception Model

The Inception architecture [50] started as a case study for assessing the hypothetical output of a
sophisticated network topology construction algorithm. This algorithm tries to approximate a sparse
structure for vision networks and covering the hypothesized outcome by dense, readily available
components. With small modifications, it has proven to be quite useful in the problems of localization
and object detection as described in [51–53].

The main element of this model is the inception block, which instead of choosing the size of the
filter such as a 1× 1, 3× 3, or 5× 5 filter, or whether a pooling layer should be present, allows combining
all these layers to operate on the same level, resulting in a more complex network architecture, but that
ultimately provides better performance. The architecture of the inception block is shown in Figure 8.
To mitigate the computational complexity of the deep neural networks, an effective solution is to
limit the number of input channels by adding an extra 1 × 1 convolution before the 3 × 3 and 5 × 5
convolutions, as used in [50]. Although adding an extra operation may seem counterintuitive, 1 × 1
convolutions are far cheaper than 5 × 5 convolutions due to the reduced number of input channels.
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Figure 8. Inception block [50].

Another part worth mentioning here is that after all convolutional layers have been executed,
the concatenation is done per channel (filter). The Inception model’s complete architecture is shown in
Figure 9, which ultimately combines the inception blocks with standard layers to create a very deep
neural network.

2x

3x

     Convolution
Maxpool
Argpool

Fully-connected
Softmax

    

4x

Concat
Dropout

Figure 9. Inception architecture [21].

3.1.4. Custom Pretrained Inception

The custom pre-trained inception model leverages the architecture of the Inception model,
as explained in Section 3.1.3, while extending it to improve performances further. To have a model that
has already learned low-level features such as horizontal and vertical lines, we used the InceptionV3
pre-trained model offered by Keras (https://keras.io/api/applications/inceptionv3/). Apart from
using the Inception architecture, we extended it by adding a new sub-model path. This sub-model
path takes as input weather data, which goes through three fully connected layers. The weather data
taken into consideration for this model are: weather description, precipitation, humidity, and visibility.
The weather data are concatenated with the output of the inception model in the last fully connected
layer, which then goes to a softmax layer that outputs the predicted class. Figure 10 shows the custom
pretrained inception architecture.

https://keras.io/api/applications/inceptionv3/
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      ...

Weather data

Image
data
640x480

Local Response
Normalization

Predicted
class

Convolution

Maxpool

Convolution

Convolution

Local Response
Normalization

Maxpool

Inception Block

Inception Block

Inception Block

Inception Block

Inception Block

Inception Block

Maxpool

Maxpool

Fully Connected

Fully Connected

Avgpool

Fully Connected

Fully Connected

Fully Connected

Softmax

Figure 10. Proposed custom pretrained inception.

3.2. Data Preprocessing

Generally, high air pollution takes place in specific periods of the year, causing a high-class
imbalance between the number of data instances available for different levels of air pollutions.
Skopje, North Macedonia is not an exception, and the high-class imbalance poses a challenge for
any predictive task. Our dataset contains 167,348 images of Skopje’s central area, taken from a camera
placed on Vodno. Even though Skopje in the last few years has been in the top 10 most polluted cities
in the world, the dataset is highly imbalanced, with about 120,000 images having low air pollution
(the non-polluted class), causing a skew in the class distribution. This phenomenon can be explained
by the fact that Skopje is highly polluted, mainly in winter and dry days. Consequently, training our
model using this type of dataset would ultimately lead the model biased to the non-polluted images.
It would lead to over-fitting on the validation and testing set. Imbalanced datasets cause very
impactful bottlenecks in CNN networks and need to be addressed. For this reason, we exploit
random oversampling and undersampling as well as image augmentation, as explained in the
following subsections.

3.2.1. Random Oversampling and Undersampling

We used two different strategies for tackling the class imbalance issue. The first technique is
random oversampling and undersampling, as explained in [54]. This technique allows obtaining a
balanced dataset by randomly taking multiple copies of minority class images or randomly skipping a
portion of the majority class images. These techniques did not prove useful in our problem and did
not resolve the imbalance issue, as shown in Section 4.

3.2.2. Image Augmentation

Standard image processing augmentation techniques were applied recurring to the Keras
library. Generating new and realistic images with operations such as image flipping and rotation,
as well as zooming by small factors, has a big potential in improving the performances of the
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network. These techniques were applied after both approaches for class balancing described in
the following subsections.

3.2.3. Conditional Generative Adversarial Networks (CGAN)

Conditional Generative Adversarial Networks (CGAN) [55] allows us to augment the dataset
using generative models. We trained these models to learn how to generate new images based on
previously seen images. Specifically, we trained a CGAN model using the minority class’s images in
the training set and applied it to generate new images for the same class, mitigating the class imbalance
issue. The idea of the CGAN is to augment the dataset and provide us with a training dataset where
50% of the images are from the first class, and the remaining are of the second class. The CGAN is not
used in the testing dataset because we want to test our models on the camera’s raw images. After the
CGAN is applied and the dataset has been balanced; simple augmentation methods such as flipping
images, rotating, and zooming by small factors are applied to the dataset. This additionally improves
the performances of our models and provides us with a broader dataset. We show the evaluation of
these techniques in Section 4.

4. Results

4.1. Experimental Setup

For conducting our experiments and evaluation, we used Tensorflow version 2.3.0 and Keras
version 2.4.3. The complete dataset consists of 178,992 images, where 80% of the images are taken for
training the models, 15% of the images are for testing, and 5% for validating. We decided to use a
smaller percentage for validation and testing datasets because we have a bigger dataset, and using
this approach, we can leverage the large amount of data for training purposes. The validation dataset
was used for hyper-parameter tuning, where a grid search approach was used. The hyper-parameters
tuned are: learning rate, batch size, and optimizer used. We have obtained the optimal parameters
through the grid search, i.e., a learning rate of 0.001, batch size of 64 images, and Adam optimizer.

4.2. Evaluation

Our proposed models have incorporated pollution data and weather information for the last
two years in Skopje, North Macedonia. The air pollution data is collected from the API endpoints
of pulse.eco (https://pulse.eco). The API provides information about different sensors and different
pollutants at different timesteps. The timesteps are irregular, so the data is aggregated hourly for
each sensor. Every row consists of sensor information, timestamp (date and time), the pollutant type,
and the amount measured. Our models have used only the PM2.5 pollution to labeling the images
during the training process. Therefore, they are not inputs in the machine learning models.

We have also used images taken from a stationary camera placed at the Vodno mountain near
Skopje, North Macedonia. The camera takes periodical pictures of the center of the city, and at the
same time, air pollution sensors measure the exact air quality. Based on the air quality measurements
in terms of PM2.5 concentration, the images were labeled with six classes depending on the Air Quality
Index (AQI) of the European Union, as shown in Table 1.

The implications of the six AQI indexes are the following. AQI-1 means that the air quality is
satisfactory, and air pollution poses little or no risk. AQI-2 means that the air quality is acceptable.
However, there may be a risk for some people, particularly those who are unusually sensitive
to air pollution. AQI-3 means that members of sensitive groups may experience health effects.
The general public is less likely to be affected. With AQI-4, some members of the general public
may experience health effects, and members of sensitive groups may experience more serious health
effects. AQI-5 requires a health alert because the risk of health effects is increased for everyone.
AQI-6 entails issuing a health warning of emergency conditions because everyone is more likely to
be affected.

https://pulse.eco
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Ideally, a system would be able to estimate air pollution precisely. However, the fact that the
proposed models are attempting to do this based on the camera images and not actual air pollution
sensors makes it unreasonable to define the task as a regression problem. Therefore, our initial
approach was to use six classes, one for each AQI category. We additionally redefined the problem as a
binary classification problem, collapsing AQI-1 and AQI-2 into the “not polluted” class, and the other
AQI indexes into the “polluted” class.

In some models, we have also incorporated the weather information to distinguish between
weather conditions and pollution. The weather information was collected from the API endpoints of
World Weather Online (https://www.worldweatheronline.com). The data consists of temperature,
wind speed, wind direction, weather description, precipitation, humidity, visibility, pressure,
cloud coverage, heat index, and the UV index. We have used a simple strategy that considers the
last measured value to handle the missing pollution measurements, although more sophisticated
approaches based on generative models can be incorporated.

Even though we have merged the six classes into two general classes, the dataset is still
highly imbalanced, and our models could become very biased to non-polluted images. For that
purpose, we applied different techniques for balancing the dataset and evaluated their impact on the
classification performance.

Table 1. Air Quality Index (AQI) categories based on ranges of PM2.5 values and mapping to labels in
the different classification problems.

AQI Category PM2.5 Range 6-Class Labels Binary Labels

Good 0–50 AQI-1 Not polluted

Moderate 51–100 AQI-2 Not polluted

Unhealthy for Sensitive Groups 101–150 AQI-3 Polluted

Unhealthy 151–200 AQI-4 Polluted

Very Unhealthy 201–300 AQI-5 Polluted

Hazardous 301 and above AQI-6 Polluted

Table 2 shows the distribution of the dataset in when using six classes. The distribution of
the dataset after collapsing the six classes into two is shown in Table 3. For illustrative purposes,
Figures 11 and 12 show different “not polluted” and “polluted” examples during different weather
conditions and time of day.

Table 2. Distribution of the dataset in 6 classes.

Dataset AQI-1 AQI-2 AQI-3 AQI-4 AQI-5 AQI-6

Train 80,331 21,623 13,954 11,087 9862 6337
% 56.1% 15.1% 9.7% 7.7% 6.9% 4.4%

Test 13,342 4219 3022 1987 1564 1135
% 52.8% 16.7% 12.0% 7.9% 6.2% 4.5%

Table 3. Distribution of the dataset in 2 classes. Classes “very low” and “low” are collapsed into the
“not polluted” class, and the remaining ones are collapsed into the “polluted” class.

Dataset Not Polluted Polluted Total

Train 101,954 41,240 143,194
% 71.2% 28.8%

Test 17,561 7708 25,269
% 69.5% 30.5%

Total 168,463

https://www.worldweatheronline.com
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(a) AQI-1 (Not polluted) (b) AQI-2 (Not polluted) (c) AQI-3 (Polluted)

(d) AQI-3 (Polluted) (e) AQI-4 (Polluted) (f) AQI-5 (Polluted)

Figure 11. Exemplary images in the dataset in the different classes during the day.

(a) AQI-1 (Not polluted, night) (b) AQI-2 (Not polluted, night) (c) AQI-4 (Polluted, night)

(d) AQI-1 (Not polluted) (e) AQI-4 (Polluted) (f) AQI-5 (Polluted)

Figure 12. Exemplary images in the dataset in the different classes during the night or other weather
conditions with limited visibility.

Figure 13 shows the different architectures’ training and testing accuracy, depending on the
number of epochs. It is clearly visible that the models are stable, and after a small number of epochs,
the performance does not vary significantly. However, another clear result is that the accuracy is about
56%, the same as the majority class ratio. This means that the models learned to classify all images
as “AQI-1,” i.e., the “good” AQI category. As such, the predictions are not useful, which was one of
the main reasons to evaluate the binary classification approach that collapsed multiple categories into
only two.

Figure 14 show the training and testing accuracy of the different architectures, depending on the
number of epochs and whether class balancing was performed or not. These results confirm that the
models are stable, and after about 40 epochs, the performance does not vary. Likewise, it is evident
that both that training and testing accuracy benefited significantly from the proposed CGAN data
augmentation. Note that the test set remains unbalanced in all experiments because the balancing
is performed only on the training set. The reason for that is that in a production setting, the camera
images would not be going through a balancing process; rather, they would be simply classified.
We have also applied to balance using class weights as part of the training of the model. This technique
allows the network to give different learning rate factor to the different images. This means that the
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images belonging to both the classes affect the neural network’s learning rate with a scaled factor based
on the number of images belonging to that class over the total number of images. Although being
very efficient in many problems, this technique performed very poorly in our problem, so we omit
the results.

(a) Training (b) Test

Figure 13. Accuracy of the different architectures on 6-class classification.

(a) Training (imbalanced) (b) Test (imbalanced)

(c) Training (balanced with GANs) (d) Test (imbalanced)

Figure 14. Accuracy of the different architectures on binary classification.

5. Discussion

The elevated levels of PM2.5, coming along with the fast economic growth and increased number
of vehicles in major cities, have caused serious visibility problems in big cities. The authors in [56] have
shown that population density is positively associated with PM2.5 concentrations, pointing to pollution
centralization and congestion effects dominating the mitigating effects of mode-shifting associated with
density. Authors in [57] have also found that with the rapid economic growth, China has witnessed
increasingly frequent and severe haze and smog episodes over the past decade, posing serious health
impacts to the Chinese population, especially those in densely populated city clusters. A visibility
of less than 200 m on 1 December 2004 has been reported in Beijing, when the PM2.5 was as high as
300 µg/m3 [58]. More recently, in January 2013, PM2.5 was measured to be as high as 500–800 µg/m3
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in Beijing, which resulted in a visibility of less than 100 m [59]. Visibility impairment is caused by light
scattering and absorption by suspended particles and gases. There has been strong and consistent
evidence that PM2.5 is the overwhelming source of visibility impairment in both urban and remote
areas [60]. Other authors have also pointed out that in recent years the atmospheric visibility in China
has reduced sharply, which is closely related to the increase of the concentration of fine particulate
matter (PM2.5) in the atmosphere [61]. Authors in [62] have also researched the relationship between
PM2.5 concentrations and socioeconomic factors in China’s major cities, where they found that cities
with high PM2.5 concentrations tend to be clustered and population density and secondary industry
hold the keys to PM2.5 pollution control.

It is worth noting that visually similar images could have quite different AQI, hence can belong to
either the polluted or non-polluted classes. This further shows the value of our models, which works
quite well on images that the human might not recognize. Visually similar images during the day,
with very different AQI are shown in Figure 11. We can see that the Figure 11a is visually similar to
the Figure 11d, but they belong to the AQI-1 and AQI-3 classes, respectively. Other clear examples of
visually similar images are Figure 11b,c, where the Figure 11b belongs to the AQI-2 class, while the
Figure 11c belongs to the AQI-3 class. Another example of the visually similar images during the day
is Figure 11b,e, where the first one belongs to the AQI-2 class and the second one – to the AQI-4 class.

Visually similar images with different AQI can also occur during the night, as shown in Figure 12.
From this figure, we can conclude that while Figure 12b,c are quite similar, their AQI classes are quite
different. The first image belongs to the class AQI-2, while the second image belongs to the AQI-4
class. Another case is Figure 12d,e, which are also visually similar. However, their AQI difference
is quite high, where the first image belongs to the class AQI-1, and the second—to the class AQI-4.
The rain can partially explain Figure 12d, which blurs the camera, whereas in Figure 12e, there is no
rain. The weather conditions play a huge difference in classifying, hence the need for integrating them
into the classifier, as we have done in our custom pretrained inception network.

Considering the challenge posed by visually similar images with significantly different AQIs,
the proposed model’s value is highlighted considering that it classifies images with 0.896 accuracy on
the training set and 0.763 accuracy on the testing set. Using only images and weather information,
this model allows us almost optimally to infer whether pollution is present.

6. Conclusions

Air pollution prediction represents an important analytical task with the potential to provide
decision support capabilities to address air quality issues. In this paper, we investigated the adoption
of deep learning architectures to address this task effectively. A data fusion approach was proposed
to exploit multi-modal data consisting of weather and pollution measurements collected by sensors
and image data collected by cameras. Generative models, combined with standard data augmentation
approaches have been adopted to handle the significant class imbalance in the data, to provide a
robust predictive capability of the models. A real-world dataset collected in Skopje (North Macedonia)
was adopted to conduct an extensive experimental analysis. Our experiments show that our custom
pre-trained inception model, combined with our data preprocessing approach, obtains significant
results in terms of accuracy, outperforming known state-of-the-art methods. As future work, we aim
to investigate the adoption of hybrid models that combine CNNs and LSTMs, and to conduct a
wider experimental analysis with geo-distributed data. The proposed approach’s practical application
is that the cameras are much more widespread than air pollution sensors such as PM2.5 or PM10
meters. Therefore, it can facilitate the estimation and forecasting of air pollution, even in areas with no
appropriate sensors.

In principle, our methodology is suitable for every application where image data is correlated
with sensor data, and using them in combination can be beneficial for the learning task. In particular,
the adoption of our methodology in multi-class classification settings with imbalanced classes is
particularly beneficial. This includes applications to hyperspectral images combined with sensor data,
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in domains such as agriculture, geology, and environmental sciences, for monitoring and detecting
harmful situations.

From a computational cost viewpoint, our method presents an overhead during the training
phase due to the data fusion and augmentation steps, which are not performed in basic model
architectures. However, the data fusion presents a negligible increase in computation time that is
linear with the increase of the number of inputs. The effort of GAN data augmentation during
training is mitigated by the choice of the Inception architecture [50], which presents a reasonable
number of training parameters (6.4M) compared to other highly adopted architectures, such as
VGGNet [63] (138M) and ResNet [49] (60.3M) (https://towardsdatascience.com/the-w3h-of-alexnet-
vggnet-resnet-and-inception-7baaaecccc96). Moreover, once the initial training effort has been carried
out, the resulting model appears robust and accurate in the presence of new data characterized by
challenging conditions, such as noise and imbalance. Consequently, the model can be exploited without
additional computational effort to perform accurate inferences in new scenarios with a wide range of
data characteristics.
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