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Abstract: This paper deals with energy efficiency examined through an integrated model that links
energy with environment, technology, and urbanisation as related areas. Our main goal is to discover
how efficiently developed countries use primary energy and electricity (secondary energy). We
additionally want to find out how the inclusion of environmental care and renewable energy capacity
affects efficiency. For that purpose, we set up an output-oriented BCC data envelopment analysis
that employs a set of input variables with non-negative values to calculate the efficiency scores on
minimising energy use and losses as well as environmental emissions for a sample of 30 OECD
member states during the period from 2001 to 2018. We develop a couple of baseline models in which
we find that countries have mean inefficiency margins of 16.1% for primary energy and from 10.8 to
13.5% for electricity. The results from the extended models show that taking care about environment
does not affect efficiency in general, while the reliance on energy produced from renewable sources
does slightly reduce it.

Keywords: energy efficiency; primary energy; electricity; DEA analysis

1. Introduction

Energy in its etymological meaning denotes “activity” and it is properly defined as
the capacity for taking action or working. The concept occupies an important place as an
input in virtually every production process, therefore impacting economic activity and also
contributing to economic development. In this light, efficient energy use means to produce
at lower cost or of greater value, which implies that energy efficiency is extremely relevant
in the economic analysis of growth and development. Furthermore, an important aspect of
economic development is the notion of sustainability that has gained momentum in the
past decade, and in this regard, energy use should be put into function of sustaining the
ecosystem services that the economies depend on—that is to say, it is necessary to take
care of the environment as a related area and make use of the renewable sources of energy
production.

The coherent study of energy efficiency and its relationship with the environmental
issues has recently enjoyed an increasing interest among researchers in the economic circles
(see Section 2 for details). In addition, the importance of energy use in the sustainability
framework has been identified with the Sustainability Development Goals (SDGs) set by
the United Nations in 2015 and expected to be achieved by 2030. In particular, Sustainable
Development Goal 7 (SDG 7) is about “affordable and clean energy” and its mission
statement has the aim to “ensure access to affordable, reliable, sustainable and modern
energy for all” [1]. Importantly, this goal has five targets—universal access to modern
energy; increase global percentage of renewable energy; double the improvement in energy
efficiency; promote access, technology, and investments in clean energy; and expand
and upgrade energy services for developing countries—and the progress towards its
achievement is measured through six indicators—access to electricity, access to clean fuels
for cooking, renewable energy, energy efficiency, access and investment in clear energy,

Energies 2021, 14, 1185. https://doi.org/10.3390/en14041185 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9852-769X
https://doi.org/10.3390/en14041185
https://doi.org/10.3390/en14041185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14041185
https://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/14/4/1185?type=check_update&version=3


Energies 2021, 14, 1185 2 of 21

and expanding energy services for developing countries—which clearly outlines energy
efficiency with reference to environment and renewable sources [2].

Yet despite the rising popularity of the topic, we have identified a lack of economic
literature dealing with it in a quantitative fashion, which has motivated us to make a
step forward and contribute to its enrichment. The main goal of this paper is to examine
how efficiently the developed countries use energy proxied through primary energy and
electricity (secondary energy). Our secondary goal is to examine how energy efficiency is
impacted when the environmental care and energy production from renewable sources are
taken into account. Thence, our research interest in this paper aims to provide answers to
the following four questions.

Question 1. What is the extent to which developed countries use energy (in)efficiently?

Question 2. What form of energy do developed countries use more efficiently: primary energy or
electricity?

Question 3. Does the environmental care increase or decrease energy efficiency?

Question 4. Does energy produced through renewable energy capacity increase or decrease energy
efficiency?

In order to answer the foregoing questions, we construct a sample of member states
of the Organisation for Economic Co-operation and Development (OECD) and choose
the period 2001–2018. Guided by the targets and indicators from SDG 7, we define a
set of energy-related variables alongside a few other indicators as proxies for related
and important areas, such as technology, urbanisation, and environment, with the aim of
developing an integrated framework. We set our objective to minimise energy intensity and
energy loss in view of the levels of other energy indicators as input variables. Based on our
extensive review of other papers studying efficiency, we opt-in for the data envelopment
analysis (DEA) framework and construct an output-oriented model to yield (in)efficiency
scores on energy use. In that context, we explain why the DEA framework is a useful
method applicable to examining energy efficiency and argue why scholars should seriously
consider it for similar empirical analyses.

Our paper contributes to the existing literature in the following ways. Firstly, it sheds
light on the quantitative side of the energy efficiency analysis with the aim of providing
evidence for drawing coherent conclusions. Secondly, it makes use of derived variables
that were specifically defined to capture the essence of energy use. Thirdly, this paper
further extends the area of applicability of the DEA framework and its formulation can
be used a starting point for future research. Fourthly, the multi-country approach allows
for cross-country discussion of the results and opens up other possibilities for linking the
concept of energy efficiency with other relevant areas such as economic development. All
in all, our research conveys the importance of DEA on energy efficiency and the results we
arrive at are beneficial from both theoretical and empirical perspectives.

The rest of the paper is structured as follows. Section 2 reviews the related literature.
Section 3 discusses the construction of the sample, lists the data sources, and defines the
variables included in the empirical analysis. Section 4 unfolds the main trends throughout
the analysed period. The DEA methodology is set up in Section 5, while the results from
the optimisation are presented and discussed in Section 6. The paper concludes with final
remarks given in Section 7.

2. Literature Review

In this section, we review the literature related to the application of the DEA frame-
work to energy and environmental economics. To that end, we divide the existing literature
into two strands—the first one focussing on other literature reviews about the frequency of
matching the DEA methodology with energy economics, and the second one reviewing
literature with empirical application of the DEA models to yield concrete results regarding
energy efficiency.
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Of the first strand of literature, the authors of [3] conducted a literature review on
DEA in energy and environmental economics. They analysed 145 articles from two online
databases—Scopus and Web of Science—in the period 2000–2018. They provide an exten-
sive analysis of the implemented DEA model in a tabular format. Besides this, they present
a distribution of DEA papers in the analysed areas of the 45 journals and they find that
the Journal of Cleaner Production has the highest number of publications (17), followed by
Sustainability (16) and Energy (14). Furthermore, based on the distribution of papers per
year, they provide a line chart and an appropriate analysis indicating that the interest of
researchers in these areas has dramatically increased. In 2015, there were only 12, while in
2017, there were 14 papers. In addition, they use the papers from Web of Science to visualise
the co-occurrence of the keywords. On the co-occurrent keywords figure, it can be seen
that the word “efficiency” has the strongest link with the other keywords. The keywords
are clustered in three clusters of their co-occurrence. In the green cluster, the keywords are
efficiency, DEA, input, output, and DEA model; in the red cluster, there are China, region,
energy, energy efficiency, emission, etc.; while in the blue cluster, there are productivity,
economy, sustainability, eco-efficiency, environmental performance, sustainable develop-
ment, and sustainability. The authors of [4] make a literature survey on the application of
data envelopment analysis in sustainability. They focus on articles in the Web of Science
database and, after excluding papers that are not related to DEA in sustainability, their
sample consists of 320 papers published in the period 1996 to March 2016. The distribution
of papers in the period 1996–2015 is presented in a visual form, which indicates that the
interest of DEA in this area has significantly increased in the last five years. The first DEA
paper in sustainability is by [5]. The authors visualise the distribution of papers in journals
and they point out that, in 20 journals, approximately 48% of the papers get published. The
journal Energy Economics is in first place, followed by the Journal of Cleaner Production and
Energy Policy. In this paper, the authors focus on citation analysis by applying three citation
methods: (i) Citation chronological graph, (ii) main path analysis, and (iii) Kamada-Kawai
algorithms. They find that the current key route of data envelopment analysis application
in sustainability is focused on measuring eco-efficiency.

Likewise, the authors of [6] conducted a literature review on the evaluation of energy
efficiency using DEA. They focus on recent publications, i.e., the period from 2011 to 2019,
and analyse 281 papers from the Web of Science database. According to the distribution
of papers per year, the visualised data in a bar chart demonstrate that there is a gradual
increase over years and the highest number of papers (61) was in 2019. They present a
tree map with the number of publications across journals, with Energy Economics assuming
the leading role with 26 papers, followed by Sustainability with 25 papers and Energy with
22 papers. In order to visualise the keywords and their context evolution in the analysed
period, they use Citespace. Accordingly, they present a figure from which it can be seen
that DEA models are enriched in order to enable a better evaluation of energy efficiency
and, besides the theory enrichment, there are several DEA applications. Models that are
used in the analysed papers range from traditional as CCR and BCC to SBM models, from
using one output to inclusion of output that is undesirable, and from a static to a network
structure. The data refer to countries, regions, industries, and companies, and most of the
studies use regions as DMUs. When data envelopment analysis is used to measure the
total factor energy efficiency (TFEE), energy, capital, and labour are taken as inputs, GDP is
expected output, and carbon emissions are the undesirable output.

Another systematic review on studies that assess the performance of renewable energy
using the DEA framework was done by [7]. They search studies in Science Direct, SCOPUS,
and Google Scholar, and implement the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement. By analysing 72 scholarly articles, they provide
visual presentation of the distribution of these studies, from which it can be noted that
the first study was published in 2001 (Ramanathan, 2001) and the peak (14 studies) was
achieved in 2017. The studies are categorised according to seven technologies: Renewable
energy, solar energy, wind energy, municipal solid waste, biomass, hydropower, and other



Energies 2021, 14, 1185 4 of 21

renewable energies (biogas, biofuel, and geothermal). Based on the chart of the distribution
of studies in the identified areas, the renewable energy has the highest percentage (43.06%),
followed by solar energy (15.28%), and wind energy and municipal solid waste (both with
13.89%). They provide tabular representation of DEA studies for each of the identified
renewable energy technologies with focus on authors and year, scope, duration, methodol-
ogy, and references. In addition, they present a distribution of the studies according to the
employed DEA method from which it can be noted that a two-stage DEA model is applied
in 28 studies, a traditional DEA model is applied in 18 studies, a three-stage DEA model in
8 studies, a DEA model with special data in 5 studies, an extended DEA model in 4 studies,
and a Slack-based model and a Malmquist model are applied in 3 studies.

The DEA class of methods is particularly recommended for in-depth analysis of
energy efficiency. [8] provide a comprehensive literature review on DEA models applied
to energy efficiency. They use the PRISMA statement in order to identify and select the
proper papers. They identify 144 papers in the period from 2006 to 2015, published in
45 journals and indexed in the Web of Science database. In the first year of the analysed
period, only one paper was identified but the interest of researchers in energy efficiency
has grown over the years and, from 2013 to 2014, the number of papers has increased from
20 to 42. In the journal Energy Policy, 17.36% of the articles get published, followed by
the journals Renewable and Sustainable Energy Review and Energy with 19 and 13 papers,
respectively. According to expert opinions, all papers are classified in 9 areas so that
energy efficiency issues is the area with highest number of papers (35), followed by the
other application areas (25 papers) and environmental efficiency as well as renewable
and sustainable energy (each with 23 papers), while the water efficiency is an area that
has the least number of papers (4). The authors provide detailed tabular format for the
distribution of the papers in each of the areas that consists of author(s) and year, scope,
duration, application, purpose of the study, and results and outcome. In addition, they
provide distribution of papers regarding the nationality of the authors in a tabular format.
They have identified 29 nationalities and countries, with China on the top in terms of the
number of published papers on energy efficiency (44 papers), followed by Iran (18 papers),
USA (9 papers), Taiwan, Spain, and Korea (each with 8 papers). Finally, a recent literature
review made by [9] shows that there are 10,300 DEA-related publications in journals over
the period 1978–2016. The authors have listed the top 20 journals where 2974 articles
employing the DEA framework were published. In the list, Energy Policy ranks in 10th
place with 94 articles followed by The Journal of Cleaner Production in 14th place with
71 articles and Energy Economics in 15th place with 69 articles. Additionally, they present
the 50 most used keywords in a tabular format with “energy efficiency” being in the 18th
place (in 286 articles) and “sustainable development” in the 44th place (in 151 articles).
The analysis does also reveal that the most popular research keywords that appeared in
DEA-related articles in 2015 and 2016 were: Eco-efficiency, undesirable outputs, directional
distance function (DDF), environmental efficiency, carbon dioxide emissions, sustainable
development, sustainability, and environmental protection.

Of the second strand of literature, the authors [10] conduct a study that focusses on
the energy trend in the world and consequently describe how the DEA as a non-parametric
approach for measuring efficiency can be applied to the energy industries. The energy is
categorised as primary and secondary. The primary energy consists of fossil-fuel energy (oil,
natural gas, and coal) and non-fossil energy (renewable and nuclear), while the secondary
energy refers to electricity. The authors use charts to present the energy trends in the world
for the main categories of energy and their sub-categories. They present formulations for
using DEA for the fossil and non-fossil energy.

Furthermore, the authors of [11] evaluate the efficiency of energy consumption in the
manufacturing as main industrial sector in China with panel data for the period 2004–2014
by applying the non-parametric DEA methodology. The DEA model is constructed by
using piecewise linear utility function. In the DEA model, one output indicator (energy
consumption intensity) and five input indicators (competition within industries, technolog-
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ical Progress, energy consumption structure, opening up, environmental regulations, and
energy efficiency policy) are used. The energy efficiency policy is an environmental indica-
tor and is considered as both quantitative and qualitative indicator, so two DEA models are
developed accordingly. One model considers only the quantitative environmental regula-
tions, while the other integrates the quantitative and qualitative environmental regulations.
Based on the comparison of the obtained results (with and without energy policy), it was
found that low energy policy encourages the development of high energy-consumption
industries, while its impact on the development of low or moderate energy-consumption
industries is low.

Wier et al., 2005 [12] evaluate the environmental performance of Danish product and
household types by using the DEA methodology. Based on the overall score for envi-
ronmental performance, they find that middle-income families living in houses, which
represent a large proportion of all Danish families, are characterised by the least environ-
mentally friendly consumer basket. In contrast, those families that live in urban flats are
characterised by the most environmentally friendly consumer basket.

An interesting approach for environmental assessment with focus on corporate sus-
tainability by employing DEA is proposed by [13]. They use 153 observations on S&P
500 corporations in 2012 and 2013. The empirical data are from 7 US industries (consumer
discretionary, consumer staples, energy, healthcare, industrials, information technology
and materials). The following variables are taken into account: Estimated annual CO2
saving and return on assets as desirable outputs; direct and indirect CO2 emissions as
undesirable outputs; and number of employees, working capital and total assets as inputs.
Their approach provides an answer to the question of which technology innovation should
be selected to reduce the undesirable output (CO2 emissions). They find that, amongst
the seven industries, the energy sector is the best one to invest in technology in order to
achieve corporate sustainability.

Lastly, the authors of [14] propose a new approach that deals with the difficulties—
theoretical and empirical—of the DEA framework for environmental assessment. The DEA
environmental assessment can be applied to measure the performance of decision-making
units (DMUs) that use inputs and produce desirable but also undesirable outputs. For
example, desirable output is electricity, while undesirable output is the amount of CO2
emissions. The authors propose a solution to four difficulties arising from the application
of the DEA environmental assessment. They are disposability concepts, disposability
unification, undesirable and desirable congestion, and values that are zero or negative.

3. Data and Variables

Our sample consists of 30 OECD member states for which we collected annual data
for the period 2001–2018. Countries were selected on the basis of their OECD member-
ship throughout the entire analysed period. Data were collected from multiple sources,
including US Energy Information Administration (EIA) database, World Bank’s World
Development Indicators (WDI) database, and the OECD database. Since the raw data
collected are in different metric units, we apply conversion to make them suitable for the
empirical analysis.

Considering that energy is a broad concept that may appear in different forms, we opt
for primary energy and electricity as proxies to study energy efficiency. In that regard, we
define energy-related specific variables that are relevant for studying these two forms of
energy and we also add a few other variables as measures of areas that are closely related
to and important for energy efficiency. The choice of the energy-related variables relies on
the indicators used to measure the progress for achieving SDG 7 on “affordable and clean
energy”, whereas the rationale for identifying the related areas and selecting their proxies
was done upon thorough consultation of relevant literature.

The variables that we use in the efficiency analysis are the following:
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• Primary energy intensity. Energy intensity is an indicator of the energy efficiency
in an economy and thus primary energy intensity shows how efficient are countries
in terms of primary energy. This variable tells how much output the use of energy
generates, or in other words, what the price of converting energy into output is. It has
previously been employed in empirical studies on sustainability, such as in [15] where
the measure is used as a proxy for environment in a study of sustainable economic
development. We calculate this variable using the formula

Primary energy intensity =
Primary energy consumption

GDP
(1)

where primary energy consumption is measured in billion kWh and GDP in inter-
national US$ using current prices. Therefore, primary energy intensity essentially
points out to the primary energy use per unit of GDP. Normally, the higher value of
the measure signifies more energy use needed to produce a unit of GDP and that is
higher energy inefficiency.

• Primary energy trade dependence. The mismatch of production and consumption
of primary energy reveals country’s trade orientation. It stands to reason to assume
that a country producing more energy than it can consume will export the excess and
a country needing more energy than it can produce will import to mouth its needs.
Otherwise, the mismatch will lead to distribution losses or energy deficiency. For the
sake of measuring how much a country is oriented towards trading primary energy,
we define an indicator calculated as the ratio

Primary energy
trade dependence

=
|Primary energy balance|

Primary energy production
(2)

where primary energy balance is the difference between the consumed and produced
primary energy. As our goal is to measure trade dependence without making dif-
ference between import- and export-orientation, we take the absolute value of the
primary energy balance.

• Primary energy from renewables. Sustainable energy is one of the cornerstones of
energy efficiency and the production of energy of low cost from naturally replenishing
sources is a major efficiency goal. The authors of [16] explain that sustainability is
fundamentally and basically a matter of renewable sources. In the same vein, we take
the share of primary energy that is produced from renewable sources in order to proxy
for sustainable energy in our efficiency analysis.

• Electricity intensity. In a similar way as the primary efficiency intensity, this variable
aims to tell how efficient countries are in consuming electricity to produce output. The
formula for calculating the electricity is

Electricity intensity =
Electricity consumption

GDP
(3)

where electricity net consumption is measured in billion kWh. Again, the higher value
of the measure points out to more electricity needed to produce a unit of GDP and
that denotes higher electricity inefficiency.

• Electricity loss ratio. Electricity losses are the units of electricity that remain unused.
In light of this definition, our variable to measure the electricity losses is defined as

Electricity loss ratio =
Electricity loss

Electricity production
(4)
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where electricity loss is the unused electricity yielded after the traded electricity is
added to the electricity balance, that is

Electricity
loss

=
Electricity
production

− Electricity
consumption︸ ︷︷ ︸

Electricity balance

+
Electricity
net import

(5)

• Electricity capacity. The installed electricity capacity is an indicator of how efficiently
electricity is generated and it refers to the amount of electricity that can be produced
from electricity generators under given conditions. In order to better suit in our
analysis, we calculate the ratio of the electricity installed capacity to the electricity
production. The higher value of this measure points out to higher efficiency in
electricity generation.

• Electricity from renewables. As for primary energy, we use the share of electricity
produced from renewable sources as a measure of sustainable electricity.

• Renewable electricity capacity. In a similar way as the electricity capacity ratio, this
variable measures the efficiency of electricity generation from renewable sources.

• R&D expenditure. Technology fosters innovations and it can lead to production
at lower cost and more efficient consumption. The amount of R&D expenditure
is commonly used as a measure of technology. In the context of the energy sector,
Ref. [17] studies the impact of public R&D expenditures on the innovation process
in the energy sector, while [18] examine the effect of energy R&D expenditures on
CO2 emissions reduction. Given the close connection of the research area in these
two papers with ours, we accept R&D expenditure of GDP as a convenient proxy for
technology.

• CO2 emissions. Energy efficiency does not only mean producing at minimum cost
and consuming to generate maximum output. There are numerous papers that
make use of CO2 emissions as an environment-related target variable in the energy
analyses [18–21]. Ciupăgeanu et al. [21] find that CO2 emissions are strongly affected
by the share of renewable energy in the total generated energy. In light of this litera-
ture, we consider the level of CO2 emissions measured in metric kg relative to GDP a
suitable indicator for the environmental issues.

• Urbanisation rate. The demand for and consumption of energy are significantly
higher in the urban compared to the rural areas. For instance, Ref. [22] have found
that the process of urbanisation leads to substantial increases in both the actual and
the optimal energy consumption but to a decrease in efficiency of energy use. We are
concurrent that the level of urbanisation can be properly considered a useful variable
in the analysis of electricity efficiency and we therefore calculate it as urban population
relative to total population.

The intensity variables and the CO2 emissions are the only used as output variables,
while the rest are included as input variables in the empirical analysis.

A detailed review of the variables used in the empirical analysis is given in Table A1
of Appendix A.

4. Main Trends
4.1. Descriptive Statistics

Descriptive statistics are reported in Appendix B where Table A2 reports the summary
statistics for all countries over the entire period and Tables A3 and A4 contain the country
means over the entire period. Given that the values of the energy-related variables differ
significantly from one to another country and yield outlying results, we calculate weighted
means as well as weighted standard deviations for these indicators. The time evolution of
the variables can be discerned from Figures A1 and A2 in Appendix C.

The mean value for primary energy intensity is 1.643, meaning that 1.643 kWh are
needed to generate an output of 1 US$ across the analysed countries on average. Czech
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Republic, Slovakia, Iceland, Poland, and Canada are countries with the highest intensities,
in all above 3, while Switzerland, Ireland, and Denmark record the lowest intensities, in
all below 1 on average. The general trend is that the inefficiency measured through this
variable is steadily decreasing over time—namely, from 3.331 in 2001 to 1.421 in 2018.
The mean electricity intensity is several times lower and equals 0.222. All countries have
average intensities below 0.5, except for Iceland, which stands out with 0.866 and is the only
country that has attained intensity above 1 in some years. Again, the inefficiency measured
through this variable follows a downward trend and it went down from 0.433 in 2001 to
0.215 in 2018. In regard to the electricity loss ratio, the quantity of energy that remains
unused is around 6.4% on average across countries. Only Turkey, Mexico, Luxembourg,
and Hungary have mean amount of unused energy above 10%. Unlike the previous two
measures of inefficiency, this one has remained fairly constant around 7% on average
throughout the entire period.

Trade dependence has a moderate weighted mean index value of 0.405, indicating that
countries need to trade primary energy of about 40.5% of the produced amount in order to
fill the production-consumption gap. Countries that are the most independent of trading
primary energy are Denmark (18.2%), Mexico (20.4%), and United States (27.3%), while
countries that depend the most on the trade are Luxembourg and Ireland whose traded
amounts of primary energy are 62 and 10 times the quantity they produce, respectively.
The evidence is conclusive that the trade dependence across countries reduces over time,
being more than two times lower in 2018 than the peak achieved in 2003.

Primary energy produced from renewable sources accounts for 13.9% on average
across countries with a standard deviation of 13.1%. Iceland, Luxembourg, and Portugal
are countries with full production from renewables, while Australia, Mexico, and Poland
generate less than 5% of their primary energy from these sources. Likewise, the share of
electricity generated from renewables amounts to 20.1% with higher standard deviation
of 18.8%. The only country that fully produces electricity from renewables throughout
the entire period is Iceland and Norway follows closely with about 98.8%. However, it is
worth noting that Luxembourg has had full electricity generation from renewables since
2016 but because of the lower share in the previous years, its average share is only 32.4%.
The shares of both primary energy and electricity produced from renewable sources tend
to move upwards as time goes by and have ramped up from less than 30% in the early
2000s to more than 40% in the 2010s.

The installed electricity capacity averages around 25.7% of the total electricity pro-
duction, ranging from 16.5% in Iceland to 170.4% in Luxembourg. Yet this large difference
between the two countries, most countries have fairly equal installed capacity in the in-
terval from 20 to 30%, which can be further confirmed by the standard deviation of only
4.6%. With respect to the installed capacity for generating electricity from renewables, it
averages around 30.3% and is highest in Greece with 56.3% and South Korea with 48.4%.
Both capacity measures follow upward movements from year to year.

Of the variables proxying for the related areas, it is worth noting that countries spend
about 1.8% of GDP on research and development on average, being slightly higher in
the end years compared to the start years of the analysed period. The share ranges from
0.7% in Greece, Slovakia, and Turkey to 3.3% in Finland, South Korea, and Sweden. Next,
the mean carbon dioxide emissions amount to 0.342 Mkg per 1US$, with lowest average
emissions of 0.088 Mkg/US$ in Switzerland and highest of 0.837 Mkg/US$ in Poland. CO2
emissions had a downward-sloping curve in the 2000s, but it eventually flattened out in
the 2010s. Finally, the average level of urbanisation across the sampled countries equals
0.774, indicating that 77.4 of the total population inhabits urban areas, and it tends to go
slightly up over time.
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4.2. Energy Use and Economic Development

In this section, we study energy use across countries as measured through the energy
output variables with respect to their economic development as proxied by the nominal
GDP per capita (see Figures A3–A5 of Appendix D).

The correlation coefficients for all three output variables—primary energy intensity,
electricity intensity, and electricity loss ratio—with the nominal GDP per capita are negative,
which indicates that, in general, countries with higher economic development tend to use
energy in a more efficient manner.

Primary energy intensity has a moderate to strong negative correlation coefficient
of −0.53. Most countries with average GDP per capita between 20,000 to 50,000 US$ are
clustered with intensity values between 1.0 and 2.0, while the intensity of all six countries
with GDP per capita lower than 20,000 US$ exceeds 2.0. Countries that stand out and, at
the same time, record high GDP per capita and high intensity above 3.0 are Iceland and
Canada.

Electricity intensity and nominal GDP per capita have weak negative correlation
coefficient of −0.27. Almost all countries are scattered in a cluster with intensity values
between 0.1 and 0.4. Countries standing out of the cluster and hinting to a negative
direction are Luxembourg, Norway, Switzerland, and Iceland. The last one, albeit with a
very high GDP per capita, has electricity intensity that is more than two times that of the
next country.

Electricity loss ratio has very weak negative correlation coefficient of −0.10. Countries
are scattered with no visible direction and similar loss ratios in the interval from about 3 to
9% are associated with different levels of GDP per capita. Hungary, Turkey, and Mexico
point out to a negative direction with loss ratios above 10% but this tendency is well off-set
by Luxembourg as a country with the highest GDP per capita and second highest loss ratio.

At first glance, these findings seem to somewhat contradict the popular view that coun-
tries with higher energy intensity are economically more developed with high-intensity
industrial production, while those with lower energy intensity are developing countries
with labour-intensive economies. Nonetheless, it has to be to noted that even though
countries differ significantly in terms of economic development, OECD consists of rela-
tively well-developed economies where countries with the least GDP per capita have still
much more advanced economies than the developing world. Thence, it can properly be
concluded that the negative direction does not imply that the industrialised economies
attain more efficient energy use than the labour-intensive ones but that, amongst the
industrialised ones, those with higher GDP per capita usually perform better.

5. Methodology

The main goal of our empirical analysis is to get efficiency scores with regards to the
energy efficiency indicators for each country over the analysed period. Since we aim to
employ energy-related indicators as both output and input variables and enrich the analysis
with other variables capturing technology and urbanisation as input variables, we find it
convenient to follow the efficiency literature [23] and implement the data envelopment
analysis (DEA) using DMUs.

DEA was introduced in empirical economics by [24,25]. It is a non-parametric tech-
nique that, through linear programming, approximates the true but unknown technology
without imposing any restriction on the sample distribution. Its main advantage over the
parametric methodologies is that it does not require functional assumptions for efficiency
assessment [26]. The authors of [27] also identify the following technical advantages com-
pared to the parametric methods: (i) It is not necessary to find out the concrete form of
production function and is with less restrictions; (ii) it is easier to deal with the case with
multiple inputs and multiple outputs; (iii) the technological efficiency analysis enables the
enterprises to find out which input is not efficiently utilised and to look for the best way to
improve efficiency in addition to knowing the input efficiency of the evaluated structure
in question compared to the most outstanding enterprises; and iv) the non-parameter ap-
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proach allows not only to arrive at a conclusion about the technological efficiency but also
to calculate the economic efficiency, allocation efficiency, and pure technology efficiency,
which makes it possible to conduct an inclusive evaluation and should be regarded as a
comprehensive assessment index of achievements. In fact, DEA is a complex benchmarking
technique that yields production possibilities where efficient multi-criteria DMUs posi-
tioned on this surface shape the frontier [28]. The identified benchmarks for each inefficient
unit should serve as a “soft target” because some of them may have an advantage that the
inefficient one could not replicate [29].

There are several assumptions that we find it necessary to establish before moving on
to the optimisation problem that we are going to solve. They are presented in turn.

Assumption 1 (Linearity). The objective function in the optimisation using DEA is linear.

This assumption implies that the optimisation is done using a linear programming
technique. However, this may be problematic in practice because the objective function
and the constraints are expressed as fractions and they are thus non-linear, which requires
the optimisation problem to be formulated in a linear form.

Assumption 2 (Non-negativity). The values of the inputs xi,n and outputs yi,m as well as the
weights λi are non-negative, i.e., xi,n, yi,m, λi ≥ 0.

Non-negativity means that the selected variables as inputs and outputs cannot take
any negative values or, alternatively, need to undergo a procedure that will allow them to
be included in the analysis with non-negative values.

Assumption 3 (Convexity constraint). The weights λi sum up to 1, i.e., ∑C
i=1 λi = 1.

The convexity constraint is the main feature that distinguishes the BCC DEA from the
CCR DEA and assumes that the model accounts for variable returns to scale (VRS) instead
of constant returns to scale (CRS).

As lower values of the energy indicators that we use as outputs indicate efficiency, we
set up a minimisation output-oriented model with an objective function

f(x, y) = min θi (6)

s. t.
C

∑
i=1

λiyi,m ≥ θiyi,m, m (7)

C

∑
i=1

λixi,n ≤ xi,n, n = 1, . . . , N (8)

C

∑
i=1

λi = 1 (9)

xi,n, yi,m ≥ 0 (10)

λi ≥ 0 (11)

where x = (x1, . . . , xn) ∈ RN
+ is the set of N inputs, y = (y1, . . . , yn) ∈ RM

+ is the set of M
outputs, λi are the intensity weights for the linear combination of the sampled countries
and θi = ∑C

i=1 λiyi,m/ ∑C
i=1 λixi,n denotes the efficiency score. The constraint in (4) results

directly from Assumption 3, while the constraints in (5) and (6) illustrate Assumption 2.
At the end, we consult [27] and introduce two definitions as necessary pre-conditions

to achieve relative DEA-efficiency.
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Definition 1. If the optimal program satisfies f (x, y) = minθi, then DMUi is weakly DEA-
efficient.

This definition states that θi = 1 is the efficient score that can be obtained from the
optimisation. In other words, this means that a weakly DEA-efficient DMUi when θi = 1
lies on the DEA frontier. In case θi < 1, then the 1− θi is an inefficiency margin, which
reveals by how much the output level should be improved at the given inputs to reach
efficiency.

Definition 2. If the optimal program satisfies Definition 1 and Assumption 2 holds, then DMUi is
relatively DEA-efficient.

The importance of Definition 2 is that it gives conditions that should be satisfied in
order to reach a stronger form of DEA-efficiency.

6. Results and Discussion

This section reports and discuss the results obtained in the empirical analysis.

6.1. Baseline Models

We develop separate models for primary energy and electricity as the two forms of
energy that are subject to examination in our empirical analysis. In the baseline DEA model
for primary energy, we employ primary energy trade dependence, primary energy from
renewables, R&D expenditure, and urbanisation rate as input variables and primary energy
intensity as the only output variable. In the case for electricity, our baseline DEA model
includes electricity from renewables, electricity installed capacity ratio, R&D expenditure,
and urbanisation rate as input variables, and electricity intensity as well as electricity
loss ratio as output variables. We run two versions of this model—the first one with
the electricity installed capacity ratio and the second one with the renewable electricity
installed capacity ratio. Given the discrepancies in the values of the variables from year to
year as well as the missing values for R&D expenditure, we calibrate the model with the
country averages over the entire period. The inefficiency margins from the baseline models
are presented in Columns 1, 3 and 5 of Table A5 in Appendix E.

The average inefficiency margin minimising primary energy intensity is 16.1%, indi-
cating that there is room for further reduction while keeping all inputs unchanged. Seven
of the sampled countries, namely Australia, Canada, Czech Republic, Denmark, Mexico,
Poland, and Slovakia, are relatively DEA-efficient with DMUs on the frontier, whereas
Belgium, Japan, Luxembourg, Finland, and Spain are farthest from the frontier with in-
efficiency scores above 30%. It is tempting to conclude that the first group of countries
performs better than the second group where a mismatch of the inputs to produce optimal
output has been established but the results unfold an opportunity for the countries from
the second group to make new decisions with little effort to yield better output. Literally
speaking, being on the DEA frontier means that all possibilities to use the current inputs to
produce better output have been exploited and the only way to make an improvement is to
better the input levels. For example, the finding that Canada is on the frontier means that it
has already absorbed all possibilities to reduce primary energy intensity as a target output
given the values of its input variables and no re-allocation with constant inputs would
make any change. This implies that the country has to make improvements in the areas
measured through its inputs in order to further reduce primary energy intensity. On the
other hand, the inefficiency score of 37.8% for Luxembourg indicates that the country could
reduce primary energy intensity by this rate through re-allocation efforts under constant
inputs. Nevertheless, the re-allocation efforts that could increase efficiency are usually
met by constraints of other nature, thus posing practical difficulties to achieving higher
efficiency level.
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In the model where the objective is to minimise electricity intensity and electricity
capacity is used as an input, the average inefficiency score is lower and equals to 10.8%.
This finding reveals that countries make more efficient decisions regarding electricity use,
which can be explained through the fact that primary energy is a complex grouping of
various forms of energy that is much more difficult to deal with than electricity. In total,
eight countries lie on the frontier in this set-up, whereas Denmark and Luxembourg score
the highest inefficiency margins, both above 30%. Though Mexico, Poland, and Slovakia
are again on the DEA frontier, it is worth noting that there are significant differences across
countries compared to the case with primary energy, which further supports the notion
that managing primary energy is very different from managing electricity. For instance,
Belgium, which had an inefficiency of 39.8%, now scores an inefficiency of 12.2% and South
Korea, whose inefficiency margin was 22.3%, is on the frontier in this set-up. However,
there are also examples with change in the opposite direction. United States scored an
inefficiency of 7.6% while optimising primary energy intensity and its inefficiency with
respect to the electricity intensity has almost doubled to 14.2%.

The results obtained from the model for electricity intensity and renewable electricity
capacity as an input are only partially consistent with the model using electricity capacity.
Countries have a slightly higher mean inefficiency of 13.5% and, although Austria and
Switzerland bring the number of countries on the DEA frontier up to 10, there is a general
trend of increased inefficiency compared to the other version of this model. A more
thorough examination of the differences reveals that the inefficiency margins go up for
countries whose renewable electricity capacity is greater than the electricity capacity.

6.2. Extended Models

We extend the baseline models by adding the environment component proxied by
the CO2 emissions as an output variable in each of them. The inefficiency margins from
the extended models are reported in Columns 2, 4 and 6 of Table A5 in Appendix E, while
Figures A6–A8 in Appendix F make a comparison between the margins obtained from the
baseline and extended models.

The inefficiency scores yielded in the extended models for optimising primary energy
intensity and electricity intensity when electricity capacity is included are fully consistent
with those in the baseline models. The steady scores amidst the addition of CO2 emissions
means that countries face a split-off of the improvement across the output variables that
they could achieve with a better match of the inputs at its current levels. Slight differences
are noticeable in the extended model for electricity with renewable electricity capacity as
an input and all of them point to a decreased inefficiency. As a result, the mean inefficiency
margin amounts to 12.6%, which is 0.9 percentage points lower to that in the baseline
model. Czech Republic is the country with most significant change from an inefficiency of
12.0% in the baseline model to DEA efficiency on the frontier in the extended model.

7. Conclusions

Our study of energy use and economic development reveals that OECD member
states with higher nominal GDP per capita, in general, use primary energy and electricity
more efficiently. The findings that we arrive at in the empirical analysis offer answers to
our research questions. Firstly, we find that the sampled countries on average have an
inefficiency margin of 16.1% for primary energy use and from 10.8 to 13.5% for electricity
use. Secondly, based on the results, we conclude that the sampled countries use electricity
more efficiently than primary energy by a slight margin. Thirdly, the inclusion of the
environmental care does not affect efficiency, except for the case with electricity produced
from renewable sources where the inefficiency margin with environment decreased from
13.5 to 12.6%, indicating that the efficiency has increased. Fourthly, the inclusion of
electricity production through renewable electricity capacity moved the inefficiency margin
up from 10.8 to 13.5%, indicating that the efficiency has decreased. These results imply that
countries have the opportunity to improve their energy management that could increase
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the efficient use of primary energy and electricity by the calculated margins under constant
inputs. In other words, although the (in)efficiency margins point out to a mismatch in
the utilisation of inputs, they also uncover a hidden potential to increase the efficient use
of energy through re-allocation without the necessity to change the input values. The
approach we develop to study energy efficiency primarily using energy-related variables
with several other indicators that proxy for other related and important concepts is not ideal
though, and it has some limitations that need to be addressed in future research papers on
the topic. Firstly, the right choice of variables as inputs is oftentimes difficult and may lead
to omission of important concepts. In first place, this applies to the geographic and climate
factors that can impact the way a country manages its energy resources. Secondly, another
related problem is the lack of data for specific variables that could calibrate the model in a
proper way. Thirdly, the DEA framework assumes linearity and employs techniques of
linear programming, which may not always be true and can produce results that lead up
to conclusions that do not reflect reality. Fourthly, although the approach is sound to study
efficiency and it can very well support important decisions regarding energy use, it does
not explicitly tell what should be done to make a re-allocation that will bring closer to the
frontier or how should the inputs be changed to free some room for improvement.

We acknowledge that any future research on this topic should start off from the possi-
bility to solve the foregoing limitations and produce a more coherent and all-embracing
empirical analysis. A major next step to consider is expanding the sample size by bringing
in more countries with varying levels of economic development.

Author Contributions: Conceptualization, F.F., K.S., and V.C.; methodology, F.F., K.S., and V.C.;
software, K.S.; validation, K.S., F.F., and V.C.; formal analysis, K.S. and F.F.; investigation, K.S.;
resources, K.S.; data curation, K.S. and F.F.; writing—original draft preparation, F.F., K.S., and V.C.;
writing—review and editing, F.F., K.S., and V.C.; visualization, K.S.; supervision, F.F. and V.C.; project
administration, F.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for the sake of the empirical analysis can be found
at the following links: https://databank.worldbank.org/source/world-development-indicators
(accessed on 23 February 2021); https://data.oecd.org/ (accessed on 23 February 2021); https:
//www.eia.gov/totalenergy/data/browser/ (accessed on 23 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Definition of Variables

Table A1 contains details about the variables used in the empirical analysis, including
both the variables used in the baseline analysis and those additionally used to check the
robustness of the baseline results. Variables are classified into two groups—input and
output—in order to indicate their purpose in the analysis.

https://databank.worldbank.org/source/world-development-indicators
https://data.oecd.org/
https://www.eia.gov/totalenergy/data/browser/
https://www.eia.gov/totalenergy/data/browser/
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Table A1. Definition of variables.

Variable Abb. Unit Source

Input variables
Primary energy trade dependence PED index value greater than 0 EIA *
Primary energy from renewables PEr share of primary energy production EIA *

Electricity capacity ELC share of electricity production EIA *
Electricity from renewables ELr share of electricity production EIA *

Renewable electricity capacity ELCr share of electricity production EIA *
R&D expenditure rate R&D share of GDP OECD

Urbanisation rate URB share of total population WDI
Output variables

Primary energy intensity PEI kWh/international US$ EIA, WDI *
Electricity intensity ELI kWh/international US$ EIA, WDI *
Electricity loss ratio ELR share of electricity production EIA *

CO2 emissions CO2 Mkg/international US$ EIA, WDI *
Notes: The symbol * denotes own calculations based on data from the given sources.

Appendix B. Descriptive Statistics

Table A2 presents the summary statistics for the defined variables for all countries
over the entire period. Variables are classified into two groups—input and output—in
order to indicate their purpose in the analysis. Tables A3 and A4 report the country means
for the input and output variables, respectively, over the entire period.

Table A2. Summary statistics for all countries over the entire period.

Variable Obs. Mean Min. Max. St. Dev.

Input variables
Primary energy trade dependence 540 0.405 0.009 104.322 1.187
Primary energy from renewables 540 0.139 0.007 1.000 0.131

Electricity capacity 540 0.257 0.149 7.323 0.046
Electricity from renewables 540 0.201 0.008 1.000 0.188

Renewable electricity capacity 540 0.303 0.093 0.894 0.097
R&D expenditure rate 502 0.018 0.003 0.045 0.009

Urbanisation rate 540 0.774 0.537 0.980 0.106
Output variables

Primary energy intensity 540 1.643 0.496 8.026 0.613
Electricity intensity 540 0.222 0.071 1.231 0.078
Electricity loss ratio 540 0.064 0.014 0.677 0.024

CO2 emissions 540 0.342 0.056 1.812 0.232
Notes: The sample consists of 30 countries with data for 18 time periods.

Table A3. Country means of the input variables over the entire period.

Country Input Variable

PED PEr ELC ELr ELCr R&D URB

Australia 0.548 0.020 0.254 0.112 0.441 0.020 0.851
Austria 1.759 0.811 0.359 0.739 0.266 0.026 0.582
Belgium 4.245 0.176 0.241 0.112 0.359 0.021 0.976
Canada 0.285 0.194 0.213 0.633 0.212 0.018 0.807

Czech Republic 0.419 0.053 0.243 0.075 0.441 0.015 0.735
Denmark 0.182 0.162 0.395 0.416 0.396 0.028 0.866
Finland 1.642 0.529 0.229 0.362 0.212 0.033 0.839
France 1.099 0.164 0.229 0.149 0.346 0.022 0.783

Germany 1.721 0.254 0.275 0.208 0.461 0.027 0.766
Greece 2.499 0.250 0.291 0.173 0.563 0.007 0.761

Hungary 1.728 0.082 0.267 0.074 0.304 0.011 0.683
Iceland 0.310 1.000 0.165 1.000 0.154 0.024 0.934
Ireland 10.084 0.605 0.302 0.170 0.392 0.013 0.614
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Table A3. Cont.

Country Input Variable

PED PEr ELC ELr ELCr R&D URB

Italy 4.665 0.572 0.369 0.287 0.378 0.012 0.685
Japan 6.258 0.521 0.276 0.146 0.260 0.032 0.884

Luxembourg 62.019 1.000 1.704 0.324 0.450 0.015 0.882
Mexico 0.204 0.047 0.232 0.161 0.349 0.004 0.776

Netherlands 0.648 0.062 0.268 0.117 0.338 0.018 0.860
New Zealand 0.289 0.455 0.219 0.735 0.213 0.012 0.863

Norway 0.807 0.128 0.240 0.988 0.226 0.017 0.792
Poland 0.468 0.049 0.233 0.077 0.226 0.008 0.609

Portugal 4.977 1.000 0.348 0.424 0.399 0.012 0.602
Slovakia 1.917 0.211 0.289 0.197 0.385 0.007 0.548

South Korea 5.845 0.060 0.192 0.019 0.484 0.033 0.814
Spain 2.958 0.492 0.341 0.285 0.463 0.012 0.783

Sweden 0.547 0.561 0.242 0.554 0.278 0.033 0.853
Switzerland 1.023 0.594 0.295 0.607 0.126 0.030 0.736

Turkey 2.678 0.411 0.262 0.267 0.384 0.007 0.704
United Kingdom 0.410 0.076 0.262 0.133 0.314 0.016 0.811

United States 0.273 0.103 0.252 0.118 0.297 0.027 0.807
Notes: Variables are labelled using the abbreviations introduced in Appendix A.

Table A4. Country means of the output variables over the entire period.

Country Output Variable

PEI ELI ELR CO2

Australia 1.871 0.251 0.065 0.458
Austria 1.264 0.177 0.057 0.210
Belgium 1.889 0.197 0.051 0.349
Canada 3.088 0.413 0.051 0.448

Czech Republic 3.324 0.380 0.058 0.756
Denmark 0.843 0.118 0.059 0.174
Finland 1.677 0.373 0.040 0.247
France 1.380 0.192 0.064 0.177

Germany 1.327 0.173 0.046 0.280
Greece 1.636 0.236 0.077 0.395

Hungary 2.675 0.323 0.118 0.486
Iceland 3.296 0.866 0.036 0.192
Ireland 0.837 0.110 0.081 0.184

Italy 1.166 0.160 0.073 0.230
Japan 1.281 0.201 0.046 0.271

Luxembourg 1.229 0.140 0.133 0.255
Mexico 2.152 0.212 0.154 0.444

Netherlands 1.629 0.147 0.048 0.346
New Zealand 1.980 0.309 0.071 0.300

Norway 1.635 0.336 0.069 0.125
Poland 3.094 0.349 0.082 0.837

Portugal 1.560 0.228 0.091 0.304
Slovakia 3.302 0.367 0.044 0.566

South Korea 2.824 0.381 0.037 0.628
Spain 1.507 0.202 0.093 0.286

Sweden 1.503 0.305 0.069 0.133
Switzerland 0.747 0.115 0.069 0.088

Turkey 2.237 0.276 0.154 0.491
United Kingdom 1.073 0.132 0.082 0.213

United States 1.957 0.259 0.062 0.384
Notes: Variables are labelled using the abbreviations introduced in Appendix A.
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Appendix C. Time Evolution of Variables

Figures A1 and A2 show the evolution of the variables over the analysed period.
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Appendix D. Charts on Energy Use and Nominal GDP per Capita

The figures below plot the average values of the energy-related output variables and
nominal GDP per capita over the analysed period for all countries in the sample.
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Appendix E. Inefficiency Margins from the DEA Models

Table A5 reports the inefficiency margins calculated as 1−θi per Definition 1. Columns
1, 2 report the results from the models studying primary energy, whereas Columns 3–6
the results from the models including electricity. Columns 3, 4 contain the results from
the models with electricity capacity, while Columns 5, 6 those with renewable electricity
capacity as an input. Columns 1, 3 and 5 present the baseline results, while the others those
from the extended models.
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Table A5. Inefficiency margins across countries calculated in the DEA models.

Country

Specification

Primary Energy
Electricity

With Electricity Capacity With Renewable
Electricity Capacity

Baseline
Model

(1)

Including
Emissions

(2)

Baseline
Model

(3)

Including
Emissions

(4)

Baseline
Model

(5)

Including
Emissions

(6)

Australia 0.000 0.000 0.151 0.151 0.286 0.286
Austria 0.042 0.042 0.036 0.036 0.000 0.000
Belgium 0.398 0.398 0.122 0.122 0.339 0.339
Canada 0.000 0.000 0.057 0.057 0.115 0.114

Czech Republic 0.000 0.000 0.083 0.083 0.120 0.000
Denmark 0.000 0.000 0.334 0.334 0.320 0.320
Finland 0.308 0.308 0.109 0.109 0.105 0.088
France 0.241 0.241 0.081 0.081 0.240 0.240

Germany 0.250 0.250 0.173 0.173 0.256 0.256
Greece 0.195 0.194 0.151 0.151 0.161 0.161

Hungary 0.121 0.121 0.000 0.000 0.000 0.000
Iceland 0.150 0.150 0.000 0.000 0.000 0.000
Ireland 0.107 0.107 0.023 0.023 0.023 0.019

Italy 0.200 0.200 0.169 0.169 0.160 0.142
Japan 0.380 0.380 0.217 0.217 0.165 0.165

Luxembourg 0.378 0.378 0.302 0.302 0.302 0.235
Mexico 0.000 0.000 0.000 0.000 0.000 0.000

Netherlands 0.258 0.258 0.183 0.183 0.294 0.294
New Zealand 0.134 0.134 0.049 0.049 0.022 0.022

Norway 0.238 0.238 0.111 0.111 0.138 0.138
Poland 0.000 0.000 0.000 0.000 0.000 0.000

Portugal 0.090 0.090 0.000 0.000 0.000 0.000
Slovakia 0.000 0.000 0.000 0.000 0.000 0.000

South Korea 0.223 0.223 0.000 0.000 0.000 0.000
Spain 0.300 0.300 0.248 0.248 0.255 0.213

Sweden 0.245 0.245 0.145 0.145 0.257 0.257
Switzerland 0.193 0.193 0.184 0.184 0.000 0.000

Turkey 0.160 0.160 0.000 0.000 0.000 0.000
United Kingdom 0.155 0.155 0.158 0.158 0.253 0.250

United States 0.076 0.076 0.142 0.142 0.243 0.243

Appendix F. Charts of the (in)Efficiency Scores from the DEA Models

The figures below plot the (in)efficiency scores from the baseline and extended models.
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