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Gaussian laser beam transformation into an optical vortex beam by helical lens

Ljiljana Janicijevic and Suzana Topuzoski*

Faculty of Natural Sciences and Mathematics, Institute of Physics, University “Ss Cyril and Methodius”, Skopje, Republic of
Macedonia

(Received 19 April 2015; accepted 17 August 2015)

In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination
of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL).
As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing
through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident
beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its
characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and
radii, at any z distance behind the HL plane, as well as in the near and far field.

Keywords: Fresnel diffraction; helical lens; Gaussian laser beam; vortex

1. Introduction

The optical elements with embedded phase patterns in
their phase transmission functions have attracted an
increased interest because they produce optical vortex
beams [1,2]. The optical vortex beams or optical vortices
possess screw dislocations on their wavefronts, where
the phase is nondefined, and accordingly, the wave
amplitude and intensity are equal to zero. Due to its heli-
coidal phase wavefront around the singular axis, the opti-
cal vortex beam carries orbital angular momentum
(OAM) along its propagation axis [3]. The OAM was
shown to be proportional to the topological charge (TC)
number of the beam. The modulus of the TC shows how
many times the phase changes from 0 to 2π radians in
azimuthal direction around the singular axis, while its
sign defines the direction of the wavefront helicity.

It was shown that this OAM can be transferred to a
captured microparticle causing its rotation in a direction
determined by the sign of the TC [4]. The optical vortex
beams have been generated by a variety of techniques
including a laser cavity [5,6], spiral phase plate (SPP)
[7,8], computer-generated holograms [9–11], a magneto-
optic spatial light modulator [12], an X-ray angular
structure [13], and liquid-crystal displays LCDs [14].
The SPP is an optical element whose optical thickness
increases in azimuthal direction, around the plate center,
thus, having a transmission function T uð Þ ¼ exp ipuð Þ (φ
is the azimuthal coordinate and the parameter p governs
the total phase shift as the angle changes from 0 to
2π rad). It is a well-known element which transforms the
Gaussian beam into output vortex beam [15].

There are other numerous applications of vortex
beams; They have been used for optical trapping of
particles [16,17], atom trapping, and guiding [18], as
information carriers [19] for multiplexing in free-space
communications [20], and for realizing of electron vortex
beams [21], just to mention a few.

The phase mask with transmission function of the
SPP is a useful optical device having applications
ranging from astronomy (optical vortex coronagraph) to
fiber optics, high-power fiber lasers, microscopy,
lithography, optical tweezers, and quantum optics
[22,23].

The authors in [24] created vortex-producing lenses
by multiplying the angular phase pattern of the SPP with
the phase of a Fresnel lens. They experimentally encoded
their transmission functions onto a parallel-aligned
nematic LCD, and used them in experimental test for
optical processing [24].

In [25] the phase function of the vortex lens with
singularities embedded at off-axis locations was trans-
lated to a spatial light modulator, and the intensity dis-
tributions near the focal plane were experimentally
obtained.

In this article, we study in detail the hybrid optical
element – a combination of a SPP with TC p and a thin
lens with focal length f, named the helical lens (HL), in
the process of Fresnel diffraction of a Gaussian laser
beam. The beam waist of radius w0 is a distance z = ζ
from the HL plane. The analytical theory we present
gives results for the amplitude and intensity distributions
of the diffracted beam, its characteristic parameters, and
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the near- and far-field approximations. Further, these
results have been specialized for the cases when the SPP
is absent (i.e. the Gaussian beam is transferred through
the lens), the lens is absent (i.e. the Gaussian beam
diffracts by the SPP only), and a special geometry
when the Gaussian beam enters with its waist in the HL
plane.

2. The transmission function of the HL and the
incident beam

The hybrid optical element which is a combination of a
SPP with TC p and a thin lens with focal length f,
named the HL, introduces a phase retardation to the
incident light

T r;uð Þ ¼ exp �i pu� kr2=2f
� �� �

: (1)

In Figure 1 the equiphase lines of the HL with TC p = 4
are shown.

This diffractive optical element is illuminated with a
Gaussian laser beam, whose waist of radius w0 is a dis-
tance z = ζ from the HL plane. In this plane the light
beam amplitude is given by the expression

U ðiÞ r;u; fð Þ ¼ qð0Þ
q fð Þ exp �ik fþ r2

2qðfÞ
h in o

¼ w0
wðfÞ exp

�r2

w2ðfÞ
� �

exp �ik fþ r2

2RðfÞ þW0ðfÞ
h in o (2)

where W0ðfÞ ¼ ð1=kÞ arctan f=f0ð Þ.
In the previous equation with k ¼ 2p=k the wave

number is denoted, while qðfÞ ¼ fþ ikw2
0=2 is the beam

complex parameter and f0 ¼ kw2
0=2 is the Rayleigh dis-

tance. To the beam’s complex curvature
1

qðfÞ ¼ 1
RðfÞ � 2i

kw2 fð Þ, a real on-axial radius of curvature

RðfÞ ¼ f 1þ f0=fð Þ2
j k

is assigned, while

wðfÞ ¼ w0 1þ f=f0ð Þ2
j k1=2

is the beam transverse ampli-

tude profile radius.

3. The theory of Fresnel diffraction of a Gaussian
laser beam by HL

In order to calculate analytically the diffracted wave field
behind the HL, we use the Fresnel Kirchhoff diffraction
integral [26]

Uðq; h; zÞ ¼ ik

2pðz� fÞ
exp �ik z� fþ q2

2 z� fð Þ
� 	
 �

�
Z1
0

Z2p
0

Tðr;uÞU ðiÞðr;u; fÞ

exp �i
k

2

r2

z� f
� 2rq cosðu� hÞ

z� f

� 
� 	
rdrdu

in which the incident beam (2) and HL transmission
function (1) are involved.

The integration over the azimuthal coordinate is done
by the use of the integral representation of Bessel func-
tion of the first kind (Equation 9.1.21 in [27])

JnðzÞ ¼ ði�n=pÞ
Zp
0

exp iz cos#ð Þ cos n#ð Þd#;

after which the expression for the diffracted wave field
amplitude can be written in the form

Uðq; h; zÞ ¼ ik

ðz� fÞ
qð0Þ
qðfÞ exp �ik zþ q2

2ðz� fÞ
� 
� 	

exp �ip hþ p
2

� �h i
Y ðq; hÞ:

(3)

In Equation (3) with Y(ρ, θ) the integral over the radial
variable is denoted

Y ðq; hÞ ¼
Z1
0

Jp
kq

z� f
r

� 


exp � ik

2

1

z� f
� 1

f
þ 1

qðfÞ
� 	

r2

 �

rdr:

(4)

It is an integral of type Yl;m ¼
R1
0 JlðbrÞ

exp �a2r2ð Þrm�1dr, whose general solution is represented
by Kummer function (Equation 11.4.28 in [27]), but for
ν = 2 (as in our case), and when Re 2þ lð Þ[ 0 and
Re a2ð Þ[ 0, its solution can be written using Equation 3,
Ch. 2.12.9 in [28], as

Yl;2 ¼ b
ffiffiffi
p

p
8a3

exp � b2

8a2

� 

Iðl�1Þ=2

b2

8a2

� 

� Iðlþ1Þ=2

b2

8a2

� 
� 	
(4a)

Also, in our case μ = p, b ¼ kq
z�f, a

2 ¼ ik
2

1
z�f � 1

f þ 1
qðfÞ

h i
,

or 1
2a2 ¼ z�fð ÞqðfÞ

ik z�fð Þ 1�qðfÞ=f½ �þqðfÞf g, and Re a2ð Þ ¼ 1
w2ðfÞ.Figure 1. Equiphase lines of the HL with TC p = 4.
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The quotient b2/8a2 can be written in the following way

b2

8a2
¼ ik

2

1

2 z� fþ qðfÞ
1�qðfÞ=f

h i� 1

2ðz� fÞ

2
4

3
5q2

¼ ik

2

1

2Qðz� Z1Þ �
1

2ðz� fÞ
� 	

q2; (5)

where we have introduced a new complex beam parameter

Q z� Z1ð Þ ¼ z� fþ q fð Þ
1� q fð Þ=f

¼ z� fþ fþ if0
1� fþ if0ð Þ=f : (6)

Futher, by separating the real and imaginary parts in the
previous equation

Qðz� Z1Þ ¼ z� f� f20=f
� �� f 1� f=fð Þ
1� f=fð Þ2þ f0=fð Þ2

þ i
f0

1� f=fð Þ2þ f0=fð Þ2

we find that the new complex beam parameter can be
written in the form

Qðz� Z1Þ ¼ z� Z1 þ iZ0; (7)

where we have denoted with Z1 and Z0 these expressions

Z1 ¼ fþ f20=f
� �� f 1� f=fð Þ
1� f=fð Þ2þ f0=fð Þ2 ; (8)

Z0 ¼ f0
1� f=fð Þ2þ f0=fð Þ2 : (9)

To the new beam complex curvature defined as

1

Qðz� Z1Þ ¼
1

Rðz� Z1Þ �
2i

kW 2ðz� Z1Þ ; (10)

a new real on-axial radius of curvature is assigned,
which, according to its definition, at distance z − Z1 can
be written as

Rðz� Z1Þ ¼ ðz� Z1Þ 1þ Z0
z� Z1

� 
2
" #

: (11)

In Equation (10) the parameter W ðz� Z1Þ is analog to
the new beam transverse amplitude profile radius at dis-
tance z − Z1

W ðz� Z1Þ ¼ W0 1þ z� Z1
Z0

� 
2
" #1=2

: (12)

Its minimum value

W0 ¼ w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f=fð Þ2þ f0=fð Þ2

q (13)

is found from Equation (9) when taking into considera-
tion that the new parameter Z0 is defined as
Z0 ¼ kW 2

0 =2.
Returning to the argument b2/8a2, given by Equation

(5), and using the results from (6) to (13), we can also
write it in the form

b2

8a2
¼ ik

2

q2

Q0ðzÞ : (14)

We put the previous Equation (14) into (4a) in the Bessel
function argument and in the exponential term. While, in

the multiplier
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp=2Þ b2=8a2ð Þp

we will also implement

this expression: b2

8a2 ¼ �ik
4

q2

ðz�fÞ
Q f�Z1ð Þ
Qðz�Z1Þ. By making equiva-

lence between Equations (5) and (14) one can find that

1

Q0ðzÞ ¼
1

2Qðz� Z1Þ �
1

2ðz� fÞ : (15)

Further, from the general definition of the beam complex
curvature we can write

1

Q0ðzÞ ¼
1

R0ðzÞ �
2i

kW 02ðzÞ : (16)

Equalizing the previous Equation (16) with (15) into
which the expression (10) has been involved, leads to
the following conclusions

1

R0ðzÞ ¼
1

2Rðz� Z1Þ �
1

2ðz� fÞ (17a)

and

W 02ðzÞ ¼ 2W 2ðz� Z1Þ: (17b)

Finally, the solution for the radial integral (4) can be
written as

Y ðq; hÞ ¼ 2iðz� fÞ2
kQ0ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2

ik

2Q0ðzÞ

s
q exp � ik

2Q0ðzÞ q
2

� 	

� Iðp�1Þ=2
ik

2

q2

Q0ðzÞ
� 


� Iðpþ1Þ=2
ik

2

q2

Q0ðzÞ
� 
� 	

;

(18)

or, considering Equation (16) it can also be presented in
the following form

Y ðq; hÞ ¼ ðz� fÞ
ik

Q f� Z1ð Þ
Qðz� Z1Þ
� 	3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2

�ik

4ðz� fÞ
� 
s

q

� exp � ik

4

1

Qðz� Z1Þ �
1

z� f

� 

q2

� 	

� Iðp�1Þ=2
ik

2

1

R0ðzÞ �
2i

kW 02ðzÞ
� 


q2
� 
�

�Iðpþ1Þ=2
ik

2

1

R0ðzÞ �
2i

kW 02ðzÞ
� 


q2
� 
	

(19)
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By inserting Equation (18) in (3) we get the following
form for the outgoing, transformed by the HL beam

Uðq; h; zÞ ¼ � 2
qð0Þ
qðfÞ

ðz� fÞ
Q0ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ikp

4Q0ðzÞ

s

� exp �ik zþ q2

2ðz� fÞ
� 
� 	

exp �ipðhþ p=2Þ½ �

� q exp � ik

2Q0ðzÞ q
2

� 	
Iðp�1Þ=2

ik

2

q2

Q0ðzÞ
� 
�

� Iðpþ1Þ=2
ik

2

q2

Q0ðzÞ
� 
	

(20)

Equation (20) can also be written in this form (by the
use of Equations (16) and (17b))

Uðq; h; zÞ ¼ �2
qð0Þ
qðfÞ

ðz� fÞ
Q0ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ikp

4Q0ðzÞ

s

� exp �ik zþ q2

2 z� fð Þ þ
q2

2R0ðzÞ
� 	
 �

� exp �ipðhþ p=2Þ½ � � q

� exp � q2

2W 2ðz� Z1Þ
� 	

� Iðp�1Þ=2
ik

2

q2

R0ðzÞ þ
q2

2W 2ðz� Z1Þ
� 
�

� Iðpþ1Þ=2
ik

2

q2

R0ðzÞ þ
q2

2W 2ðz� Z1Þ
� 
	

(21)

In the previous Equations (20) and (21) we take into con-
sideration that Q′(z) and R′(z) are defined by relations (15),
(16), (17a) and (17b), through the parameters Q(z − Z1), R
(z − Z1), W(z − Z1), Z1, Z0 and W0, which are the parame-
ters of the beam transformed by the HL. They will be
explained and discussed in the next section. The validity
of the results (20) and (21) can be checked by their spe-
cialization for the cases of lens-only transformation (when
p = 0) and SPP-only transformation (when 1/f → 0).

3.1. Specialization of the results when the SPP is
absent (p = 0)

Further, we will specialize the expression (20) for the
case when the Gaussian beam is transformed only by the
lens, i.e. the TC value p = 0. Applying the identity

I�1
2
ðyÞ ¼

ffiffiffiffi
2
py

q shy
chy



¼

ffiffiffiffi
2
py

q exp yð Þ � exp �yð Þ½ �=2
exp yð Þ þ exp �yð Þ½ �=2



, we

find that Equation (20) turns into

ULðq; h; zÞ ¼ �2
qð0Þ
qðfÞ

ðz� fÞ
Q0ðzÞ

� exp
�q2

W 2ðz� Z1Þ
� 	

exp �ik zþ q2

2Rðz� Z1Þ
� 
� 	

:

(22)

Further, we rearrange the previous equation by making
the following substitutions

qð0Þ
qðfÞ ¼

w0

wðfÞ exp i arctan
f
f0

� 
� 

; (22a)

1

Q0ðzÞ ¼
�1

2ðz� fÞ
Q f� Z1ð Þ
Qðz� Z1Þ ¼

�1

2ðz� fÞ
W f� Z1ð Þ
W ðz� Z1Þ

exp i arctan
z� Z1
Z0

� 

� arctan

f� Z1
Z0

� 
� 
� 	
;

(22b)

and

W ðf� Z1Þ ¼ W Z1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f� Z1ð Þ2

Z2
0

s

¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f� Z1ð Þ2

Z2
0

s
; (22c)

thus, obtaining its final form

ULðq; h; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f� Z1

Z0

� 
2
s

w0

wðfÞ

� W0

W ðz� Z1Þ exp
�q2

W 2ðz� Z1Þ
� 	


� exp �ik zþ q2

2Rðz� Z1Þ þWðzÞ
� 
� 	�

(23)

where
WðzÞ ¼ 1

k � arctan f
f0

� �
þ arctan f�Z1

Z0

� �
� arctan z�Z1

Z0

� �h i
.

Having in mind that Z1 and Z0 are determined by
the expressions (8) and (9), respectively, the multiplierffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðf� Z1Þ=Z0ð Þ2
q

w0=w fð Þð Þ for given incident beam

parameters and focal length of the lens, plays a role of
a constant (since it does not contain the variables ρ and
z). It does not influence the wave distribution in the
big brackets, which is recognized as a Gaussian beam,
whose waist is at position z = Z1 and its Rayleigh range
value is Z0. Further, as it was noted before, the
parameter W ðz� Z1Þ, given by Equation (12), is the

0w
0W

z

1Z

HL

z=0

ζ

 z=

ζ

ζ

−1Z

)(r,ϕD

1Zz =

Figure 2. The characteristic parameters of the incident beam
and the diffracted beam.
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diffracted beam transverse amplitude profile radius,
while W0 ¼ Wminðz� Z1Þ ¼ W ð0Þ is its waist radius
(Figure 2).

The parameter Rðz� Z1Þ, given by Equation (11), is
the phase wavefront radius on the beam propagation
axis. At distances z = Z1 ± Z0 it reaches minimum value
Rðz� Z1Þ ¼ Rminðz� Z1Þ ¼ 2Z0; as z → Z1 (at the beam
waist position), Rðz� Z1Þ ! 1; and, also when
z − Z1 ≫ Z0 (far-field approximation), then R
(z − Z1) → ∞.

As it was shown by the relations (8), (9) and (13),
the waist position z = Z1, the Rayleigh range value Z0
and the minimum amplitude profile radius W0 of the dif-
fracted beam, depend on the incident beam parameters
f0; f;w0 and f.

The relations (6)–(13) are actually same with those
obtained by Self [29] in his study of a Gaussian beam
transformation by a spherical lens of focal length f.

Since the lens-transformed beam parameters are at
the same time parameters of the beam (21), transformed
by the HL, we shall briefly discuss their relations. The
expression (8) can also be written as

Z1 � f
f

¼ 1þ f=f � 1

f=f � 1ð Þ2þ f0=fð Þ2 : (24)

It indicates that, when the waist plane of the incident
beam is a distance ζ > f from the lens, then
ðZ1 � fÞ=f [ 1, i.e. Z1 − ζ > f, meaning that the waist
plane of the transformed beam is at distance Z1 > 2f.

When ζ = f, then ðZ1 � fÞ=f ¼ 1 i.e. Z1 = 2f. The
waist plane of the transformed beam is a distance
Z1 − ζ = f from the D-plane, where z = ζ (Figure 2). In
this case, the waist radius is: W0 ¼ w0f =f0 i.e. W0 > w0

if f > ζ0; W0 < w0 if f < ζ0, and W0 = w0 when f = ζ0.
Equation (24) also indicates that when ζ < f, the

waist position of the transformed beam is also smaller
than the lens focal length, Z1 − ζ < f. The extreme of this
case is when ζ = 0 (the incident beam waist coincides
with the D-plane). Then

Z0 ¼ f0
1þ ðf0=f Þ2

;W0 ¼ w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf0=f Þ2

q and Z1

¼ f0
f

f0

1þ ðf0=f Þ2
h i ¼ f0

f
Z0: (24a)

It is obvious that Z0 < ζ0 and W0 < w0. If, in
addition f = ζ0, then it follows: Z1 = Z0 = ζ0/2 and
W0 ¼ w0=

ffiffiffi
2

p
.

3.2. Specialization of the results when the lens is
absent

Another specialization of the result (20) i.e. of the
parameters Q(z − Z1), R(z − Z1), W(z − Z1), Z1, Z0 and

W0 which take part in its analytical formulation, is the
case when f → ∞, i.e. when the lens is absent. Then the
complex beam parameter defined by Equation (6)
becomes Qðz� Z1Þ ¼ z� Z1 þ iZ0 !

f!1
z� fþ qðfÞ ¼ z

þif0, i.e. Q(z − Z1) = q(z) and Q(ζ − Z1) = q(ζ), because
Z1 = 0 and Z0 = ζ0 (which is evident from Equations (8)
and (9)). In this case W0 = w0,

W ðz� Z1Þ ¼ wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z=f0ð Þ2

q
, Rðz� Z1Þ ¼ RðzÞ

¼ z 1þ f0=zð Þ2
h i

. All of the parameters appearing in

Equation (20), when the lens is absent, are parameters of
the incident Gaussian beam, but defined in the space
z > ζ. In that space the beam waist does not occur, but,
the presence of the SPP transforms the incident charge-
less laser beam into a beam with TC p, possessing a
dark axis. It is represented by the expression

USPPðq; h; zÞ ¼ 1

2

qð0Þ
qðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2

qðfÞð�ikÞ
ðz� fÞqðzÞ

s

� exp �ik zþ q2

4ðz� fÞ
� 	
 �

� exp �ipðhþ p=2Þ½ �

� q exp � ik

4qðzÞ q
2

� 	

�
�
Iðp�1Þ=2

ik

2

1

2qðzÞ �
1

2ðz� fÞ
� 


q2
� 


� Iðpþ1Þ=2
ik

2

1

2qðzÞ �
1

2ðz� fÞ
� 


q2
� 
	

:

(25)

The solution (25) is characteristic for the vortices pro-
duced by the SPP [15] and for the higher diffraction
orders of the forked gratings [30], when they are illumi-
nated by a Gaussian laser beam. It must be outlined that
the solution in the reference [15] concerns the case of spe-
cial incidence, when the waist of the Gaussian incident
beam coincides with the diffracting plane i.e. when ζ = 0.

By checking the validity of the expression (20) for
the cases when p = 0 and (1/f) → 0, it became evident
that in the transformation process of the Gaussian beam
by the HL, the role of the lens is to change the incident
beam parameters qðzÞ; wðzÞ; RðzÞ; f0 and w0, into a set
of new parameters Q(z − Z1), W(z − Z1), R(z − Z1), Z0
and W0, respectively. While, the role of the SPP is to
change the chargeless incident Gaussian beam into a vor-
tex beam, now defined by expression (21), possessing a
phase singularity of pth order.

3.3. Analysis of the field transformed by the HL

The analytical expression of the field (21) written by its
real parameters R(z − Z1) and W(z − Z1), using Equations
(22a) and (22b) is
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(a) z =350 mm (b) z =500 mm

(c) z =600 mm (d) z =747 mm

(e) z =1494 mm (f ) z =2988 mm

Figure 3. Radial intensity distribution of the diffracted field at different z-distances behind the HL for w0 ¼ 1mm, k ¼ 630 nm,
p = 4, f ¼ 500mm, z0 ¼ 5000mm and f ¼ 250mm. The beam waist is at Z1 ¼ 747mm. (The colour version of this figure is
included in the online version of the journal.)
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(a) z =750 mm (b) z =850 mm

(c) z =1000 mm (d) z =1150 mm

(e) z =2000 mm (f ) z =3000 mm

Figure 4. Radial intensity distribution of the diffracted field at different z-distances behind the HL for w0 ¼ 1mm, p = 4,
f ¼ 500mm, z0 ¼ 5000mm and f ¼ 500mm. The beam waist is at Z1 ¼ 1000mm. (The colour version of this figure is included in
the online version of the journal.)
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(a) z =150 mm (b) z =350 mm

(c) z =500 mm (d) z =750 mm

(e) z =1000 mm (f ) z =2000 mm

Figure 5. Radial intensity distribution of the diffracted field at different z-distances behind the HL for w0 ¼ 1mm, p = 4,
f ¼ 500mm, z0 ¼ 5000mm and ζ = 0. The beam waist is at Z1 ¼ 500mm. (The colour version of this figure is included in the online
version of the journal.)
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UHLðq; h; zÞ ¼ w0

wðfÞ
W ðf� Z1Þ
W ðz� Z1Þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ikp

2ðz� fÞ
W ðf� Z1Þ
W ðz� Z1Þ

s

� exp �i k zþ 1

4

1

Rðz� Z1Þ þ
1

z� f

� 

q2

� 
�


þUðzÞ�g exp �ipðhþ p=2Þ½ � � q exp � q2

W 02ðzÞ
� 	

Iðp�1Þ=2
ik

2
q2

1

R0ðzÞ �
2i

kW 02ðzÞ
� 
� 
�

�Iðpþ1Þ=2
ik

2
q2

1

R0ðzÞ �
2i

kW 02ðzÞ
� 
� 
	

(26)

with UðzÞ ¼ � arctan f
f0

� �
þ 3

2 arctan f�Z1
Z0

� �
� arctan

h
z�Z1
Z0

� ��
.

Thus, the intensity distribution, proportional to the
squared of the amplitude modulus IHLðq; zÞ / UHLj
ðq; h; zÞj2 is

In the forthcoming Figures 3–5 the radial intensity
distribution of the diffracted wave field at different z-dis-
tances behind the HL, calculated using Equation (27),
and for different values of the incident beam waist posi-
tion (f ¼ 250mm, f ¼ 500mm and f ¼ 0, respectively)
are presented. For all of them we used the following
parameters values: w0 ¼ 1mm, k ¼ 630 nm, p = 4,
f ¼ 500mm and z0 ¼ 5000mm. The common conclu-
sion that can be derived is that, the output beam has its

waist at distances Z1 defined by Equation (8) (which
have different values for all of these three cases). At
these axial positions, the intensity drops to zeroth values
from the outer sides of the vortex very smoothly;
instead, before and after the distance Z1, the sidelobes in
the intensity distributions are present. The vortex radius
is with smallest value at the waist position, and the
intensity “walls” are sharpest there.

In both representations of the diffracted wave field
intensity, (27) and (28), the argument of the Bessel func-
tions remains complex. To separate the real and imagi-
nary parts of the difference between two Bessel
functions one can employ the Newmann’s addition theo-
rem [27] known from the theory of Bessel functions [the
separation is shown in the Appendix 1]. However, in
order to find the correct determination of the vortex
radius, numerical method for solving the transcendental
equation needs to be applied.

Some general information about the spatial behavior
of the vortex beams, generated by the HL, and the ana-
lytical expressions for the vortex radii, can be obtained
for very near and far field.

The graphical representation of the functions
1=Rðz� Z1Þ, �1=ðz� fÞ and 2=kW 2ðz� Z1Þ helps in
forming an opinion about the choice of the regions where
entire or approximate presentation of the field UHLðq; h; zÞ
should be taken. To do so, we must have in mind that

2

kW 2ðz� Z1Þ ¼
1

Z0 1þ ðz� Z1Þ=Z0ð Þ2
h i ; (29)

and

1

Rðz� Z1Þ ¼
1

ðz� Z1Þ 1þ Z0=ðz� Z1Þð Þ2
h i ; (30)

where the parameters Z1, Z0 and W0 are defined by
Equations (8), (9) and (13), respectively.

We will choose a special incidence of the Gaussian
beam when its waist plane is a distance z = ζ = f from
the D-plane (Figure 2). Then Z1 = 2f, Z0 = f2/ζ0, and
W0 = w0f/ζ0. (If, additionally, f > ζ0, then W0 > w0.
While, when f < ζ0 then W0 < w0, and when f = ζ0 then
W0 = w0).

In the case when ζ = f, it is also valid the following

Figure 6. The variation of the parameters: −(z − ζ)−1 (dashed
curve), Rðz� Z1Þð Þ�1 (solid curve) and 2/kW2(z − Z1)
(dot-dashed curve), given by Equation (30b), along the z axis
(f ¼ 500mmand ζ = ζ0 = f). (The colour version of this figure
is included in the online version of the journal.)

IHL q; zð Þ ¼ kp
8 z�fð Þ

w2
0

w2ðfÞ
W ðf�Z1Þ
W ðz�Z1Þ
h i3

�q2 exp � 2q2

W 02ðzÞ
h i

Iðp�1Þ=2 ik
2 q

2 1
R0ðzÞ � 2i

kW 02ðzÞ
� �� �

� Iðpþ1Þ=2 ik
2 q

2 1
R0ðzÞ � 2i

kW 02ðzÞ
� �� ���� ���2 (27)

or

IHL q; zð Þ ¼ kp
8 z�fð Þ

w2
0

w2ðfÞ
W ðf�Z1Þ
W ðz�Z1Þ
h i3

�q2 exp � 2q2

W 02ðzÞ
h i

Jðp�1Þ=2 k
2 q

2 1
R0ðzÞ � 2i

kW 02ðzÞ
� �� �

� iJðpþ1Þ=2 k
2q

2 1
R0ðzÞ � 2i

kW 02ðzÞ
� �� ���� ���2 : (28)
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2

kW 2
0
¼ 1

Z0
¼ f0

f 2
;

�1

z� f
¼ �1

z� f
;

2

kW 2ðz� Z1Þ
¼ f0

f 2 1þ f0 z� 2fð Þ=f 2ð Þ2
h i and

1

Rðz� Z1Þ

¼ 1

ðz� 2f Þ 1þ f 2=f0ðz� 2f Þð Þ2
h i :

(30a)

When, in addition, f = ζ0 = ζ, then

�1

z� f
¼ �1

z� f0
;

2

kW 2ðz� Z1Þ ¼
1

f 1þ z� 2fð Þ=fð Þ2
h i ;

and
1

Rðz� Z1Þ ¼
1

ðz� 2f Þ 1þ f =ðz� 2f Þð Þ2
h i

(30b)

In Figure 6 the variation of the parameters given by
Equation (30b) along the z axis is shown.

3.3.1. The near-field approximation

From the graph in Figure 6 it is evident that, in
the region close to the diffraction plane the value of the
curvature −1/(z − ζ) dominates over the values of the real
1/R(z − Z1) and imaginary part 2/kW2(z − Z1) of the
complex curvature. For the very near field and in agree-
ment with Equation (28) the following approximations
are done: exp �2q2=W 02ðzÞð Þ � 1, 1/R′(z) ≈ −1/(z − ζ),
and the intensity is approximated as

IHL q;zð Þ � kp
8ðz� fÞ

w2
0

w2ðfÞ
W f�Z1ð Þ
W ðz�Z1Þ
� 	3

�q2 J 2ðp�1Þ=2
kq2

4 z� fð Þ
� 


þ J 2ðpþ1Þ=2
kq2

4 z� fð Þ
� 
� 	

:

(31)

Inserting x ¼ kq2=4ðz� fÞ, Equation (31) can also be
written as

IHL q;zð Þ� p
2

w2
0

w2ðfÞ
W f�Z1ð Þ
W ðz�Z1Þ
� 	3

x J 2ðp�1Þ=2 xð Þþ J 2ðpþ1Þ=2 xð Þ
h i

:

(32)

The same approximation is done for the very near field
of the SPP in [15].

Derivating the intensity, Equation (32), over the
variable x and after that making it equal to zero, we
arrive to the following transcendental equation:
Jðp�1Þ=2 xð Þ�� �� ¼ Jðpþ1Þ=2 xð Þ�� ��. (During the previous
calculations we used the relation for the Bessel functions
Jn-1(x) + Jn+1(x) = (2n + 1)x−1Jn(x)). Further, considering
that the argument x has big value when the distance
z − ζ tends to zero, the high-argument value approxima-
tion for the Bessel functions: JmðxÞ �

ffiffiffiffiffiffiffiffiffiffi
2=px

p
cos

x� mp=2� p=4ð Þ can be applied in the previous tran-
scendental equation Jðp�1Þ=2 xð Þ�� �� ¼ Jðpþ1Þ=2 xð Þ�� ��, leading
to the result: x = (p + 1)π/4, or, for the vortex radius
expression we get

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1Þkðz� fÞ=2

p
: (33)

Near to the vortex core (when ρ → 0) we use the
small-argument approximation for the Bessel function
Jm xð Þ � x=2ð Þm=C mþ 1ð Þðx ! 0; m 6¼ �1; �2; . . .Þ; and
find that the intensity here drops down to zero as

I � q2p

ðz�fÞ2p 1þ k2q4

16ðz�fÞ2ðp�1Þ2
h i

.

Whereas, outside the vortex core the intensity is
oscillating, and for larger values of the radial coordinate
it drops to zero due to the influence of the Gaussian
nature of the illuminating beam (Figure 7).

3.3.2. The far-field approximation

In the region z ≫ Z1 + Z0 the curvature
1/R(z − Z1) → +0, while −1/(z − ζ) → −0. Their sum
tends to zero since they cancel each other.

Therefore, the far-field approximation of the expres-
sion (27), since 1/R′(z) = 0, is

IHL q; zð Þ ¼ kp
4 z� fð Þ

w2
0

w2ðfÞ
W 3ðf� Z1Þ
W ðz� Z1Þ

q2

W 02ðzÞ
� exp � 2q2

W 02ðzÞ
� 	

� Iðp�1Þ=2
q2

W 02ðzÞ
� 



� Iðpþ1Þ=2
q2

W 02ðzÞ
� 
�2

(34)

To find the radius of the light core surrounding the axial
dark region, we deal with the variable
x ¼ q2=W 02ðzÞ ¼ q2=2W 2ðz� Z1Þ and put equal to zero
the first derivative of the intensity expression (34). Since

Figure 7. Radial intensity distribution of the diffracted field at
z = 10 mm behind the HL (w0 ¼ 1mm, p = 4, f ¼ 500mm,
z0 ¼ 5000mm and ζ = 0). (The colour version of this figure is
included in the online version of the journal.)
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we search for the first maximum in the paraxial region,
we will use the small value approximation for the modi-
fied Bessel functions ImðxÞ � x=2ð Þm=Cðmþ 1Þ. Also, for
the paraxial region q ! 0ð Þ we take that
exp �q2=W 02ðzÞð Þ ! 1, and from (34) we find that,
towards the vortex axis the intensity drops to zero as

ρ2p: IHL q ! 0; zð Þ / q2p

W 02pðzÞ 1� q2

ðpþ1ÞW 02ðzÞ
h i2

. From this

intensity distribution we have calculated its first maxi-
mum at radial position

qmax ¼ W 0ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 1Þ
pþ 2

s
: (35)

By the previous Equation (35) the vortex radii in the far
field are defined.

Outside the light hyperboloid we use the large argu-
ment approximation for the modified Bessel functions in

(34), Im xð Þ � 2pxð Þ�1=2exp xð Þ 1� 4m2 � 1ð Þ=8x½ �, and
find out that the intensity decreases with ρ−4:

IHL q ! 1; z[ > Z1 þ Z0ð Þ / kW 3ðf�Z1ÞW 3ðz�Z1Þ
8 z�fð Þ

p2

q4.

3.4. Specialization of the results for the case of
incident beam whose waist is in the HL plane (ζ = 0)

In the case when ζ = 0, then the parameters Z0, W0 and
Z1 are defined by Equations (24a). Substituing their val-
ues in Equation (26) one gets the amplitude of the dif-
fracted by the HL wave as

UHLðq;h;zÞ¼ w0

W ðz�Z1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ikp
8z

w0

W ðz�Z1Þ

s

�exp �i k zþ1

4

1

Rðz�Z1Þþ
1

z

� 

q2

� 
�


þUðzÞ�gexp �ipðhþp=2Þ½ �qexp � q2

2W 2ðz�Z1Þ
� 	

�
�
Iðp�1Þ=2

ik

2
q2

1

2Rðz�Z1Þ�
1

2z

� 
�

þ q2

2W 2ðz�Z1Þ


�Iðpþ1Þ=2

ik

2
q2

1

2Rðz�Z1Þ�
1

2z

� 
�

þ q2

2W 2ðz�Z1Þ

	

(36)

where, now, UðzÞ ¼ ð3=2Þ arctan �Z1=Z0ð Þ � arctan½
ðz� Z1Þ=Z0ð Þ�.

When additionally the lens is absent, then W0 = w0,
Z0 = ζ0, Z1 = 0, W(z − Z1) = w(z), R(z − Z1) = R(z), and
accordingly, the amplitude of the beam diffracted by the
SPP is

USPPðq;h; zÞ ¼ w0

wðzÞ
� 
3=2

ffiffiffiffiffiffiffiffiffiffi
�ikp
8z

r

� exp �i k zþ 1

4

1

RðzÞþ
1

z

� 

q2

� 

þUðzÞ

� 	
 �

� exp �ipðhþp=2Þ½ �qexp � q2

2w2ðzÞ
� 	

� Iðp�1Þ=2
ik

2
q2

1

2RðzÞ�
1

2z

� 

þ q2

2w2ðzÞ
� 
�

� Iðpþ1Þ=2
ik

2
q2

1

2RðzÞ�
1

2z

� 

þ q2

2w2ðzÞ
� 
#

(37)

where, now, UðzÞ ¼ �ð3=2Þ arctan z=f0ð Þ. Its far-field
approximation (valid in the region z ≫ ζ0) is

USPPðq; h; zÞ ¼ w0

wðzÞ
� 
3=2

ffiffiffiffiffiffiffiffiffiffi
�ikp
8z

r

� exp �i k zþ 1

4z
q2

� 

þ UðzÞ

� 	
 �

� exp �ipðhþ p=2Þ½ �q exp � q2

2w2ðzÞ
� 	

� Iðp�1Þ=2
q2

2w2ðzÞ
� 


� Iðpþ1Þ=2
q2

2w2ðzÞ
� 
� 	

(38)

with UðzÞ ¼ �ð3=2Þ arctan z=f0ð Þ.
By making the previous approximations, for the inci-

dent beam waist position ζ = 0 and when the lens is
absent i.e. f → ∞, we have obtained the results same as
those in [15].

4. Conclusions

In this work we have presented the complete theoretical
study about the Gaussian laser beam transformation
through a HL (an optical element which is a combination
of a SPP and a converging lens). A similar optical
element, a hybrid between SPP and axicon, named the
helical axicon, was proposed and its diffraction charac-
teristics when being illuminated by a Gaussian laser
beam were investigated by the authors in [31]. In [32] it
was shown that the helical axicon converts the diverging
vortex LG beam into nondiverging Bessel beam by
changing its TC.

The analytical expressions for the diffracted wave
field amplitude and intensity, by the HL, are derived in
the form of a difference between two modified Bessel
functions of complex argument.

By specializing the wave field amplitude, obtained
by diffracting the Gaussian beam by HL, for the case of
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absence of the lens, we have shown that, in the trans-
formation process the role of the SPP with TC p is to
introduce a phase singularity of the same order to the
output beam.

While, by specializing the wave field amplitude for
the case when the SPP is absent, one can see that the role
of the lens is to change the incident beam parameters
qðzÞ; wðzÞ; RðzÞ; f0 and w0, into a set of new parameters
Q(z − Z1), W(z − Z1), R(z − Z1), Z0 and W0, respectively.

The output beam, obtained by Fresnel diffraction of
a Gaussian beam by HL, has a waist at axial distance Z1,
where the vortex radius is with smallest value as shown
in the graphical representations of the analytically
obtained results.

Further, we have calculated the near and far-field
approximations of the intensity distribution, from where
we have obtained the analytical formulas for the vortex
rings radii.

On the end, the diffracted wave field transformed by
the HL was specialized for a specific case of incidence
of the Gaussian beam, when its waist is in the HL plane.

The results from this work could find interest and
application in many fields where the optical vortices are
implemented. For instance, they can be applied in optical
trapping setups, where one can arrange the focusing axial
position by dealing with incident beam parameters ζ and
ζ0 or the lens focal length f. Also, the desirable radius of
the vortex core can be achieved, as well as the needed
value of the OAM, which can be transferred to the
trapped particle.
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Appendix 1
To separate the real and imaginary parts of the difference
between two modified Bessel functions we will employ the
addition theorem known from the theory of Bessel functions.
According to reference [28] the identity

X1
s¼�1

�1ð Þscos sað ÞIsðxÞIsþmðyÞ

¼ cos m arcsin
x sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 � 2xy cos a
p

 !

�Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2xy cos a

p� �
ðIÞ

specialized for α = 0, and if the upper sign is considered, gives

Imðxþ yÞ ¼
X1
s¼�1

IsðxÞIsþmðyÞ (II)
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Therefore, the expression (27) turns into

IHL q; zð Þ ¼ kp
8 z� fð Þ

w2
0

w2ðfÞ
W ðf� Z1Þ
W ðz� Z1Þ
� 	3

q2

exp � 2q2

W 02ðzÞ
� 	

�

 X1

l¼�1
�1ð ÞlJ2l kq2

2R0ðzÞ
� 
"

I2lþðp�1Þ=2
q2

W 02ðzÞ
� 


� I2lþðpþ1Þ=2
q2

W 02ðzÞ
� 
� 
	2

þ
X1
l¼�1

�1ð ÞlJ2lþ1
kq2

2R0ðzÞ
� 


I2lþ1þðp�1Þ=2
q2

W 02ðzÞ
� 
�"

� I2lþ1þðpþ1Þ=2
q2

W 02ðzÞ
� 

	2�

(III)

To separate the real and imaginary parts of the Bessel functions
Jp�1

2
ð. . .Þ in (28) we apply further the Newmann’s addition theorem

[27] Jmðx� yÞ ¼P1
s¼�1 JsðxÞJsþmðyÞ, when y=xj j\1, and obtain

IHL q;zð Þ¼ kp
8 z�fð Þ

w2
0

w2ðfÞ
W ðf�Z1Þ
W ðz�Z1Þ
� 	3

q2exp � 2q2

W 02ðzÞ
� 	

�

 X1

l¼�1
�1ð Þl I2l

q2

W 02ðzÞ
� 


J2lþðp�1Þ=2
kq2

2R0ðzÞ
� 
�"

þI2lþ1
q2

W 02ðzÞ
� 


J2lþ1þðpþ1Þ=2
kq2

2R0ðzÞ
� 

	2

þ
X1
l¼�1

�1ð Þl I2l
q2

W 02ðzÞ
� 


J2lþðp�1Þ=2
kq2

2R0ðzÞ
� 
�"

�I2lþ1
q2

W 02ðzÞ
� 


J2lþ1þðpþ1Þ=2
kq2

2R0ðzÞ
� 

	2�

ðIVÞ

The donut-Gaussian term q2 exp �q2
�
W 02ðzÞ� �

enables zero
axial intensity surrounded by light core. This distribution is
additionally modified by the squared sums of Bessel and
modified Bessel functions, whose orders depend on the TC
value p.
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