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Abstract We examine the induced spin velocity in case of the Earth. Spin velocity is induced
from the conversion of a constrained spatial rotation into a spatial displacement. Its effects on
Earth as a celestial body are consequences of its properties, and they are examined in detail.
The induced spin velocity has influence on the semiannual variation of the length of day.
The annual and semiannual variations of the length of day are considered separately. The
measured value in case of the semiannual variation of the length of the day is 5.44% more
than the predicted, while the measured value in case of the annual variation of the length of
the day is 5.36% less than the predicted.

1 Introduction

The idea of multidimensional manifold (n > 4) describing the space-time and the corre-
sponding geometrical quantities is old more than one century, with some contributions of
Einstein, after the formulation of the general relativity theory. Particularly, multidimensional
geometry of time with different points of view is proposed or analyzed in recent times [1–9].
This paper is a continuation of the papers [10–14] and improvement of [13] on that subject.
Gravitation in the corresponding multidimensional space-time is recently published in [15].

We denote by x , y and z the coordinates in R
3 and parameterize the bundle of all moving

orthonormal frames by the nine coordinates x, y, z, xs, ys, zs, xt , yt , zt , where the first six of
them parameterize the subbundle with the fiber SO(3,R). So, we call it 3+3+3-dimensional
model [10–14], since we relate to each body 3 coordinates for the position, 3 coordinates
for the spatial rotation and 3 coordinates for the velocity. The 3+3+3-model is built on three
three-dimensional sets: space (S) which is homeomorphic to S3, spatial rotation (SR) which
is also homeomorphic to S3 and velocity (V ) which is homeomorphic to R

3.
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2 Some preliminaries of spinning bodies in a gravitational field

We give some preliminaries according to [16] and also some improvements. It is known that
the Lorentz group O↑

+(1, 3) is isomorphic to SO(3,C), and both of them are homeomorphic
to SR × V ∼= SO(3,R) ×R

3. Instead of these real 6 × 6-matrices, we are interested for the
product S × SR, which can be considered as a fiber and Lie group G of a principal bundle
over the base V . So, we consider this group for a fixed inertial coordinate system up to a

translation and spatial rotation and the coefficient
√

1 − v2

c2 will not have any role. This group
is analogous to the group of all rotations and translations in the three-dimensional Euclidean
space. The Lie algebra of G is given by

[
C B
B C

]
. (1)

where B and C are antisymmetric 3 × 3 matrices.
The group G is isomorphic to the group Spin(4) [14]. While the Lorentz group reduces

to the group of Galilean transformations when the velocities are small, the transformations
of the group G reduce to the affine group of all rotations and translations in the Euclidean

space in case of short translations, i.e., matrices of type

[
M �hT

0 1

]
, where M ∈ SO(3,R)

and �hT is the vector of translation.
If a rigid body is spinning, there may appear a constraint for the spatial rotation, because

there is no freedom of a chosen point to rotate according to its own trajectory. As a con-
sequence, there may appear a displacement which is called spin displacement, because it
appears in case of spinning bodies. The property of conversion from an constrained spatial
rotation into a spatial displacement is a basic property of the space. This displacement induces
the so-called induced spin velocity or simply spin velocity [13] and will be denoted by large
letter V .

The spin motion (displacement) has the following properties.

(i) The spin velocity is non-inertial, because it can be conceived just like a displacement
in the space.

(ii) Instead of the Lorentz transformations for these velocities, we may use only the Galilean

transformations and the coefficient
√

1 − V 2

c2 does not appear.
(iii) If the spin velocity of any point is constrained completely or partially, then the con-

strained part converts into inertial velocity with opposite sign.

Let us consider a trajectory over a spinning sphere, which rests in our coordinate system, but it
is under the gravitational acceleration or any mechanical force. We assume that the barycenter
is at the coordinate origin and that at the initial moment the spin axis is determined by �b∗ =
(0, 0, 1) and at the initial moment the considered point has coordinates (r cos α, r sin α, h).

In order to calculate the spin velocity, we will use the group of affine transformations in
three-dimensional Euclidean space. Its Lie algebra has the following form

A =

⎡
⎢⎢⎣

0 −ϕz ϕy sx
ϕz 0 −ϕx sy
−ϕy ϕx 0 sz
0 0 0 0

⎤
⎥⎥⎦ , (2)

where �ϕ = (wx , wy, wz)t , �w is the angular velocity of the sphere, t is short time, and �s =
(gx , gy, gz)t2/2 is small translation as a consequence of the acceleration �g. The acceleration
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�g represents mainly the gravitational acceleration, but also the acceleration which keeps the
spinning body to avoid free fall motion. In case of free fall motion of the spinning body,
we should consider �g only as vector of gravitational acceleration. But, otherwise, we should
additionally take into account the acceleration of the horizontal plane, which acts on the
spinning body in the direction of the spinning axis. Indeed, in this case, the total acceleration
is �g − �b∗[�g · �b∗]. In a special case, when �b∗ is collinear to �g, then the total acceleration is 0.

The quantities �ϕ and �s may depend on time, so we use the Taylor series. Since �ϕ(0) = 0,
�s(0) = 0 and �s′(0) = 0, we obtain

�ϕ(t) = �ϕ(0) + �ϕ′(0)
t

1! + �ϕ′′(0)
t2

2! + · · · = �wt + �w′ t2

2! + �w′′ t3

3! + · · ·

and

�s(t) = �s(0) + �s′(0)
t

1! + �s′′(0)
t2

2! + · · · = �g t
2

2
+ �g′ t3

6
+ · · · .

After these replacements into (2) the required trajectory is determined by the matrix I + A+
A2

2! + A3

3! + · · · . Then, the image (x(t), y(t), z(t)) of the starting vector (r cos α, r sin α, h),
where α is an arbitrary parameter of the circle, is given by the equality

⎡
⎢⎢⎣
x(t)
y(t)
z(t)

1

⎤
⎥⎥⎦ =

(
I + A + A2

2! + A3

3! + · · ·
)

⎡
⎢⎢⎣
r cos α

r sin α

h
1

⎤
⎥⎥⎦ . (3)

Hence, �r = (x(t), y(t), z(t)) is well defined, and the first three derivatives are

�r ′ = (−w sin α,w cos α, 0)r, (4)

�r ′′ = (−rw2 cos α − rw′
z sin α + hw′

y + gx ,−rw2 sin α + rw′
z cos α − hw′

x + gy,

−rw′
y cos α + rw′

x sin α + gz), (5)

�r ′′′ =
(

−3rww′
z cos α + rw3 sin α − w′′

z r sin α + hw′′
y + 3

2
hww′

x ,

−3rww′
z sin α − rw3 cos α + w′′

z r cos α − hw′′
x + 3

2
hww′

y,

(
−w′′

y + 3

2
ww′

x

)
r cos α +

(
w′′
x + 3

2
ww′

y

)
r sin α

)
− 3

2
(�g × �w) + �g′. (6)

Any point of the spinning sphere intends to move in its own osculating plane, orthogonal
to the binormal vector �b, but as a part of the sphere at the chosen moment all points will move
in the plane which is orthogonal to the vector �b∗. Note that in general case �b �= �b∗. We will

assume further that d�b∗
dt << w.

If there are no constraints, the Frenet antisymmetric matrix
⎡
⎣

0 k 0
−k 0 τ

0 −τ 0

⎤
⎦ ds (7)

corresponds to angular rotation of the trihedron (�t, �n, �b) by [17, sec.28]

τ �tds + k �bds. (8)
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Fig. 1 Spin velocity on a spinning sphere. d�η denotes spatial displacement, while �ξ denotes displacement on
a circular motion caused by rotation, while “con” denotes displacement with constraints

One can explain why an arbitrary point of the considered trajectories over the sphere r2+h2 =
const tends to rotate with accordance to the rotation of the trihedron (�t, �n, �b), but we will
omit this discussion.

Assume that the considered point, which moves on the considered trajectory, may be
displaced without constraint. There may exist different approaches in determining the spin
velocity, but all of them have the same approximation when τ << k. In [13] is given one
such procedure. Analogously to the invariant dx2 +dy2 +dz2 −c2dt2 in the special relativity,
in the space SR × S there exist two invariants

I1 = (d�η)2 + (d�ξ)2, I2 = d�η · d�ξ, (9)

where d�η is vector of spatial displacement caused by the space (i.e., translation), while d�ξ is
displacement caused by the rotation given by (8). The property that they are invariant means
that they remain unchanged independently of (non)existence of constraints. Now, we have
the following theorem [16] presented in Fig. 1.

Theorem The induced spin velocity of arbitrary point on a spinning sphere, whose center
rests in our coordinate system at the initial moment, is given by

�V = − τk

k2 + τ 2 rw
�b − τ 2

k2 + τ 2 rw�t, (10)

where w is the angular velocity and r is distance to the axis of the sphere.

Proof The vector of displacement caused by the rotation for angle (8) is orthogonal with the
unit vector −�n and the vector (8) and hence,

d�ξ = μ[(τ �t + k �b) × (−�n)ds] = μ(−τ �b + k�t)ds.
The vector of displacement caused by rotation (8), where τ ≈ 0 since d �b∗/dt << w is

d�ξcon = �tds, while d�ηcon = 0 because the center of the spinning sphere rests. According to
(9), we have the following system

(d�η)2 + (μ(−τ �b + k�t)ds)2 = (�tds)2,

(d�η) · (μ(−τ �b + k�t)ds) = 0.

Using also that

(μ(−τ �b + k�t)ds) + (�ηds) = �tds,
one can easily obtain that μ = k/(k2 + τ 2). The spin velocity �V is indeed the vector
d�ξ
dt − d�ξcon

dt = d�ηcon
dt − d�η

dt and now using that ds = rwdt , it is given by (10).
According to (10), we notice that

(i) | �V | = | τ√
k2+τ 2 rw| ≤ |rw|,
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(ii) |�b · �V | ≤ |rw|/2, and
(iii) �V is collinear with the vector of rotation (8). If λ = τ/k, then the spin velocity becomes

�V = − λ

1 + λ2 rw
�b − λ2

1 + λ2 rw�t . (11)

We will use the notations �Vb = − λ
1+λ2 rw�b and �Vt = − λ2

1+λ2 rw�t . �

The spin velocity �V can be decomposed as

�V = ( �V · �r)�r
r2 +

[
�V − ( �V · �r)�r

r2

]
, (12)

where �r is the radius vector starting from the barycenter of the spinning body. The first
component from the right side in (12), i.e., the radial component, participates in the global
spin motion (or displacement), which we call a global spin velocity. So, the global spin
velocity is given as the following sum over large number of small particles of the spinning
body

�V =
∑
i

mi ( �Vi · �ri )�ri
Mr2

i

, (13)

where M is the mass of the body. The summation in this formula in general case reduces
to averaging with respect to the angular parameter α ∈ [−π, π]. Since the tangent vector
�t is orthogonal to the radial vector �r , we notice that �Vt has no influence on the global spin
velocity.

3 Applications of the spin velocities in case of spinning bodies in the Earth’s
gravitational field

Let us consider a spinning circle as a gyroscope, where w is constant and the vector �b∗ rotates
with a constant angular velocity 	 around the vertical axis, i.e., around the vector �g, so that
the angle ϕ between the vector �b∗ and the vertical axis is constant. We should distinguish
two different cases:

(a) Assume that the gyroscope is in free fall motion, and the equations of motion in the
horizontal plane are the equations of the projection on the horizontal plane;

(b) Assume that the gyroscope moves on a fixed horizontal plane.

In both cases, we can write

�b∗ = (a cos 	t, a sin 	t, c),

where a = sin ϕ and c = cos ϕ. Using that �w = w�b∗ = w(a cos 	t, a sin 	t, c), where w

is constant, we obtain

�w′ = 	wa(− sin 	t, cos 	t, 0), �w′′ = −	2wa(cos 	t, sin 	t, 0).

The two different cases differ in application of the gravitational acceleration, as it was dis-
cussed in Sect. 2.
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(a) The previous formulas should be replaced in the general formulas for arbitrary �b∗,

�r ′ = wr�t, �r ′′ = −rw2(�t × �b∗) + �t · r( �w′ · �b∗) − �b∗( �w′ · �t)r + �g,
�r ′′′ = −[rw3 − r( �w′′ · �b∗)]�t − 3rw( �w′ · �b∗)(�t × �b∗) + �b∗(−(�t · �w′′)

+ 3

2
w[(�t × �b∗) · �w′])r − 3

2
w(�g × �b∗) + d�g

dt
.

Note that �w′ · �b∗ = 0, because w is a constant. The unit tangent vector �t , which is orthogonal
to �b∗ at the initial moment t = 0, can be parameterized by �t = (−c sin α, cos α, a sin α). We
use also that �g = (0, 0,−g), where g is a constant.

In order to avoid large expressions, we will make the calculations at the moment t = 0,
such that

�b∗ = (a, 0, c), �w′ = a	w(0, 1, 0), �w′′ = −a	2w(1, 0, 0).

Hence, after all these substitutions, for the derivatives of �r we obtain

�r ′ = wr(−c sin α, cos α, a sin α),

�r ′′ = −rw2(c cos α, sin α,−a cos α) − arw	 cos α(a, 0, c) − (0, 0, g),

�r ′′′ = −(rw3 + ra2w	2)(−c sin α, cos α, a sin α)

− (a, 0, c)ra	w sin α

(
	c − 3

2
w

)
+ 3

2
awg(0, 1, 0).

Further, we obtain

�r ′ × �r ′′′ = −ar2w2	 sin α

(
	c − 3

2
w

)
(c cos α, sin α,−a cos α)

− 3

2
rw2ag sin α�b∗,

(�r ′ × �r ′′′) · �r ′′ = ar3w4	 sin α

(
	c − 3

2
w

)
+ 3

2
a2r2	w3g cos α sin α −

− ga2r2w2	 sin α cos α

(
	c − 3

2
w

)

+ 3

2
g2rw2ac sin α,

(�r ′, �r ′′, �r ′′′) = −ar3w4	 sin α

(
	c − 3

2
w

)
+ ga2cr2w2	2 sin α cos α

− 3

2
g2rw2ac sin α −

− 3a2r2w3	g sin α cos α,

�r ′ × �r ′′ = r2w3 �b∗ − ar2w2	 cos α(c cos α, sin α,−a cos α)

− grw(cos α, c sin α, 0),

|�r ′ × �r ′′|2 = r4w6 + a2r4w4	2 cos2 α

+ g2r2w2(cos2 α + c2 sin2 α) − 2gr3w4a cos α +
+ 2acgr3w3	 cos α,
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and hence,

�Vb ≈ −λrw�b =
w4r4 sin α[ar3w4	

(
	c − 3

2 w
)

− ga2cr2w2	2 cos α + 3
2 g

2rw2ac + 3a2r2w3	g cos α]
[r4w6 + a2r4w4	2 cos2 α + g2r2w2(1 − a2 sin2 α) − 2agr3w3 cos α(w − c	)]2

·(r2w3 �b∗ − ar2w2	 cos α(c cos α, sin α,−a cos α) − grw(cos α, c sin α, 0))dα.

Using the formula (13) where �r = (c cos α, sin α,−a cos α), after some transformations, the
approximative spin velocity over the whole circle and for arbitrary t can be written in the
form

〈 �V 〉 ≈ − 1

π

r2w3

g
(�b∗ × �g)

·
∫ π

0

sin2 α[r2w2	
(
	c − 3

2 w
)

− gacr	2 cos α + 3
2 g

2c + 3arw	g cos α](arw	 cos α + gc)dα

[r2w4 + a2r2w2	2 cos2 α + g2(c2 + a2 cos2 α) − 2agrw cos α(w − c	)]2 .

The spin motion of the spinning circle in this case is a circle with radius R = |〈 �Vb〉|/	,
which can be tested.

(b) Apart from the gravitational acceleration, we should apply also the acceleration caused
by the horizontal plane which is in the direction of the vector �b∗. It means we should add the
acceleration −�b∗(�b∗ · �g), i.e., if we decompose �g in the direction of the axis and the other
part, the direction of the axis should be neglected. The new component should be replaced
also in �r ′′′. So, in this case we have

�r ′ = wr�t, �r ′′ = −rw2(�t × �b∗) + �t · r( �w′ · �b∗) − �b∗( �w′ · �t)r + �g − �b∗(�b∗ · �g),
�r ′′′ = −[rw3 − r( �w′′ · �b∗)]�t − 3rw( �w′ · �b∗)(�t × �b∗) + �b∗(−(�t · �w′′)

+ 3

2
w[(�t × �b∗) · �w′])r −

− 3

2
w(�g × �b∗) − d�b∗

dt
(�g · �b∗).

Analogously as in case (a), we assume that t = 0. The vectors �b∗, �w′ and �w′′, are the same
as in case (a), while for the derivatives of �r we obtain

�r ′ = wr(−c sin α, cos α, a sin α),

�r ′′ = −rw2(c cos α, sin α,−a cos α) − arw	 cos α(a, 0, c) − (0, 0, g) + (a, 0, c)gc,

�r ′′′ = −(rw3 + ra2w	2)(−c sin α, cos α, a sin α) − (a, 0, c)ra	w sin α

(
	c − 3

2
w

)

+ 3

2
awg(0, 1, 0) + gac	(0, 1, 0).
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Further, we obtain

�r ′ × �r ′′′ = −ar2w2	 sin α

(
	c − 3

2
w

)
(c cos α, sin α,−a cos α)

− 3

2
rw2ag sin α�b∗

−wrgac	 sin α�b∗,

(�r ′ × �r ′′′) · �r ′′ = ar3w4	 sin α

(
	c − 3

2
w

)
+ 3

2
a2r2	w3g cos α sin α

− ga2r2w2	 sin α cos α

(
	c − 3

2
w

)
+ 3

2
g2rw2ac sin α

+w2r2ga2c	2 sin α cos α − 3

2
rw2ag2c sin α,

(�r ′, �r ′′, �r ′′′) = −ar2w3	 sin α
[
rw

(
	c − 3

2
w

) + 3ag cos α
]
,

�r ′ × �r ′′ = r2w3 �b∗ + wr(gc − arw	 cos α)(c cos α, sin α,−a cos α)

− grw(cos α, c sin α, 0),

|�r ′ × �r ′′|2 = r4w6 + a2r4w4	2 cos2 α + g2r2w2 cos2 αa2

− 2gr3w4a cos α

+ 2acgr3w3(	 cos α − 1) = r2w2N ,

where

N = r2w4 + a2r2w2	2 cos2 α + g2 cos2 αa2 − 2grw2a cos α + 2acgrw(	 cos α − 1),

and hence

�Vb ≈ −λrw�b = a sin αr2w3	
[
rw

(
	c − 3

2w
) + 3ag cos α

]

N 2

·(r2w3 �b∗ + wr(gc − arw	 cos α)(c cos α, sin α,−a cos α)

−grw(cos α, c sin α, 0)).

After some transformations, the approximate spin velocity over the whole circle and for
arbitrary t , can be written in the from

〈 �V 〉 ≈ − 1

π

r4w5a	2

g
(�b∗ × �g)

∫ π

0

sin2 α cos α
[
rw

(
	c − 3

2w
) + 3ag cos α

]

N 2 dα.

The spin motion of the spinning circle in this case is a circle with radius R = |〈 �Vb〉|/	,
which can be tested.

Remark 1 We should remark about the following condition of equilibrium in case (b). While
the body moves with spin velocity | �V | = V , there appears centripetal acceleration V	

toward the axis of rotation. The resultant acceleration of this centripetal acceleration and the
gravitational acceleration must have a direction collinear with the vector �b∗. So, the angle ϕ

must satisfy the equilibrium condition (see Fig. 2)

tan ϕ = V	

g
.
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Fig. 2 Condition of equilibrium: the resultant force of the gravitational force and the centripetal force should
be directed toward the spinning axis

Fig. 3 The gravity center is on
larger distance of the horizontal
plane opposite to our expectation

When the body starts to rotate with small angle ϕ, then this angle ϕ increases until the
equilibrium condition is satisfied. If at the initial moment the angle ϕ is such that tan ϕ > V	

g ,
then the spinning body cannot continue and falls on the horizontal plane.

Remark 2 The radius vector �r in formula (13), in general case, has the form (r cos α, r sin α, h)

in a coordinate system where at the chosen moment �b∗ = (0, 0, 1) and h has the same mean-
ing as in formula (3) and the initial point of the vector �r is the barycenter (gravity center) of
the spinning body. Since we considered a spinning circle, the gravity center is at the center
of the circle and h = 0 in this case. Consequently, the spin vector �V was parallel to the
horizontal plane. In general case, if someone considers a spatial body (not simply a planar
body), where the mass is not uniformly distributed along the spinning axis, then the vector �V
may also have a vertical component. It may cause a situation where the gravity center of the
body is on larger distance from the horizontal plane then its distance at the initial moment
(see Fig. 3).

4 Spin velocity of the Earth

The measurements of the length of day (LOD) show slight variations during a period of
1 year. Using Fourier decomposition of the variation, there are two main components: (a)
semiannual and (b) annual variation. In case of semiannual variation of the LOD, there is
an amplitude of 0.29 ms maximizing on May 8, while the annual variation of the LOD has
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amplitude of 0.34 ms, maximizing on February 3 (see, for example, [18]). It means that in
case of semiannual variation of the angular velocity of the Earth there is an amplitude of
2.44 × 10−13 s−1 minimizing on May 8, while the annual variation of the angular velocity
of the Earth has an amplitude of 2.86 × 10−13 s−1 minimizing on February 3.

We will consider these two variations separately, because they are caused by different
sources.

4.1 Semiannual variation

In case of semiannual variation, the measurements show that the magnitude of the variation is
zero in case of the equinox and in case of summer and winter solstices. So, there is no doubt
that this case is caused by the direction of the Earth’s axis, as it is tilted toward the ecliptic
for the angle γ = 23.5◦. We also use the following notations: w is the angular velocity of
the Earth around its axis; 	 is the angular velocity of the Earth around the Sun, where in
this subsection we may assume that 	 is a constant, i.e., the eccentricity is ε = 0; R is the
radius of the Earth, where we assume that the Earth is spherical body with constant density
ρ; R is the distance between the centers of the Sun and Earth; r is the distance between the
center of the Earth and an arbitrary point from the interior of the Earth. The influences of the
eccentricity ε and non-homogeneity of the Earth’s interior will be discussed later.

Now, let us consider a spinning circle where �b∗ is a constant vector with coordinates
(0, 0, 1), �w = (0, 0, w) = const and hence �w′ = �w′′ = 0. According to the formulas (4), (5)
and (6), we obtain

�r ′ = wr(− sin α, cos α, 0),

�r ′′ = −rw2(cos α, sin α, 0) + �g,
�r ′′′ = rw3(sin α,− cos α, 0) − 3

2
(�g × �w) + d�g

dt
.

For each point inside the Earth, there are gravitational fields: toward the center of the
Earth and toward the Sun. The acceleration toward the center of the Earth is blocked, and so it
should be skipped and only remains the gravitation with constant magnitude of approximately
g = 6 mm/s2 changing only its direction. Since

⎡
⎣

cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

⎤
⎦

⎡
⎣

cos 	t
sin 	t
0

⎤
⎦ =

⎡
⎣

cos 	t cos γ

sin 	t
cos 	t sin γ

⎤
⎦ , (14)

we may assume

�g = −(cos 	t cos γ, sin 	t, cos 	t sin γ )g.

Since 	 is about 365 times smaller than w, the term d�g
dt may be neglected. The coordinate

system is chosen such that at equinoxes we have cos 	t = 0, or sin 	t = ±1.
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Further, we obtain

�r ′ × �r ′′′ = 3

2
rw2(−gx sin α + gy cos α)�b∗,

(�r ′, �r ′′, �r ′′′) = 3

2
rw2(gx sin α − gy cos α)(�g · �b∗)

= 3

2
rw2g2 cos 	t sin γ (cos 	t cos γ sin α − sin 	t cos α),

�r ′ × �r ′′ = r2w3 �b∗ + wr(gz cos α, gz sin α,−gy sin α − gx cos α)

= wr(−g cos 	t sin γ cos α,−g cos 	t sin γ sin α, rw2

+ g(sin α sin 	t + cos α cos 	t cos γ )).

Let us introduce an angle α0 such that

sin α0 = sin 	t√
1 − cos2 	t sin2 γ

, cos α0 = cos 	t cos γ√
1 − cos2 	t sin2 γ

.

Then,

sin α cos 	t cos γ − cos α sin 	t =
√

cos2 	t cos2 γ + sin2 	t sin(α − α0)

=
√

1 − cos2 	t sin2 γ sin(α − α0)

and

cos α cos 	t cos γ + sin α sin 	t =
√

cos2 	t cos2 γ + sin2 	t cos(α − α0)

=
√

1 − cos2 	t sin2 γ cos(α − α0).

Now, according to these notions, we obtain

(�r ′, �r ′′, �r ′′′) = 3

2
rw2g2 cos 	t sin γ

√
1 − cos2 	t sin2 γ sin(α − α0),

�r ′ × �r ′′ = wr(−g cos 	t sin γ cos α,−g cos 	t sin γ sin α,

rw2 + g
√

1 − cos2 	t sin2 γ cos(α − α0)),

|�r ′ × �r ′′| = wr
[
g2 cos2 	t sin2 γ + (rw2 + g

√
1 − cos2 	t sin2 γ cos(α − α0))

2]1/2
.

If we replace A = 3
2rw

2g2 cos 	t sin γ
√

1 − cos2 	t sin2 γ sin(α − α0) and B =
g2 cos2 	t sin2 γ + (rw2 + g

√
1 − cos2 	t sin2 γ cos(α − α0))

2, then the spin velocity
�Vb = −rw kτ

k2+τ 2
�b takes the form

�Vb = −rw
AB

A2 + B3

·(−g cos 	t sin γ cos α,−g cos 	t sin γ sin α, rw2

+ g
√

1 − cos2 	t sin2 γ cos(α − α0)).
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If we divide by g6 in the numerator and the denominator and use the replacement X = rw2

g ,
the spin velocity takes the from

�Vb = −rw
AB

A2 + B3

·(− cos 	t sin γ cos α,− cos 	t sin γ sin α, X +
√

1 − cos2 	t sin2 γ cos(α − α0)),

where A = 3
2 X cos 	t sin γ

√
1 − cos2 	t sin2 γ sin(α−α0) and B = cos2 	t sin2 γ +(X+√

1 − cos2 	t sin2 γ cos(α − α0))
2. The radius vector of an arbitrary point can be written as

�r = (r cos α, r sin α, z) and in order to calculate the “global” spin velocity according to (13)
we find

( �V · �r)�r
r2 = rw

AB

A2 + B3

[
r cos 	t sin γ − z(X +

√
1 − cos2 	t sin2 γ cos(α − α0)

]

· (r cos α, r sin α, z)

r2 + z2 .

In order to average this term, we integrate by α ∈ [−π, π]. Since α0 is a fixed angle,
we replace α − α0 = β, i.e., α = α0 + β and integrate by β ∈ [−π, π]. Using that
cos α = cos β cos α0 − sin β sin α0 and sin α = sin β cos α0 + sin α0 cos β, then for the
averaging inside the Earth with arbitrary (not necessarily constant) density ρ, we obtain

〈 �V 〉 =
[1

I

∫ R

−R
dz

∫ √
R2−z2

0
dr

∫ π

−π

dβ · r · rw · ρ
AB

A2 + B3

·r
2 cos 	t sin γ − r z(X +

√
1 − cos2 	t sin2 γ cos β)

r2 + z2

]
(− sin α0, cos α0, 0),(15)

where

I =
∫ R

−R
dz

∫ √
R2−z2

0
dr

∫ π

−π

dβ · r · ρ

is the mass of the Earth. If ρ is constant, then I = 4
3πR3ρ, and we obtain

〈 �V 〉 =
[ 1

4
3πR3

∫ R

−R
dz

∫ √
R2−z2

0
dr

∫ π

−π

dβ · r · rw · AB

A2 + B3

·r
2 cos 	t sin γ − r z(X +

√
1 − cos2 	t sin2 γ cos β)

r2 + z2

]
(− sin α0, cos α0, 0).

Remark 3 It is known that the Earth interior is divided into 4 shells [19]: inner core from 0
to 1200 km from the center, outer core from 1200 to 3400 km, stiffer mantle from 3400 to
5700 km, and asthenosphere from 5700 to 6370 km. Some thin shells close to the surface
are omitted because they have no role with small volumes. Later in order to calculate the
spin velocity of the Earth will be used the following averaged densities: inner core with
density 13 g/cm3, outer core with density 11 g/cm3, stiffer mantle with density 5 g/cm3 and
asthenosphere with density 3.4 g/cm3.
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Analogously to r = Xg
w2 we introduce also the replacement z = Zg

w2 and using the Earth’s
constants as R, w, g the averaging of the spin velocity becomes

〈 �V 〉 =
[ 1

4
3π5.6143

g

w

∫ 5.614

−5.614
dZ

∫ √
5.6142−Z2

0
dX

∫ π

−π

dβ · AB sin β

A2 + B3

· X
3(X cos 	t sin γ − Z(X +

√
1 − cos2 	t sin2 γ cos β))

X2 + Z2

]

(− sin 	t, cos 	t cos γ, 0)√
1 − cos2 	t sin2 γ

.

The term

Z(X +
√

1 − cos2 	t sin2 γ cos β))

has no role in the integral and can be neglected. Using that

A = 3

2
X cos 	t sin γ

√
1 − cos2 	t sin2 γ sin β

and after some arrangements, the averaging takes the form

〈 �V 〉 =
[9 cos2 	t sin2 γ

2π · 5.6143

g

w

∫ 5.614

0
dZ

∫ √
5.6142−Z2

0
dX

∫ π

0
dβ · B sin2 β

A2 + B3

X5

X2 + Z2

]

·(− sin 	t, cos 	t cos γ, 0).

This vector can be written in the coordinate system in which the ecliptic plane coincides
with the xy-plane, by multiplication from left with the matrix

⎡
⎣

cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ

⎤
⎦ .

In the horizontal (ecliptic) plane, the spin velocity is given by

〈 �V 〉h =
[9 cos2 	t sin2 γ cos γ

2π · 5.6143

g

w

∫ 5.614

0
dZ

∫ √
5.6142−Z2

0
dX

∫ π

0

B sin2 β

A2 + B3

X5d β

X2 + Z2

]

·(− sin 	t, cos 	t, 0),

while the vertical component is given by

〈 �V 〉v =
[9 cos2 	t sin3 γ

2π · 5.6143

g

w

∫ 5.614

0
dZ

∫ √
5.6142−Z2

0
dX

∫ π

0

B sin2 β

A2 + B3

X5 dβ

X2 + Z2

]

·(0, 0, sin 	t).

We notice that the horizontal component is collinear with the ordinary velocity of motion
of the Earth around the Sun. So, the spin velocity does not change the distance (at least for
the first order of approximation) to the Sun. In case of ε = 0, the distance does not change.
Only the time parameter of the trajectory changes with the spin velocity. For example, the
spring or autumn equinoxes may occur earlier or later than expected. The vertical component
of the spin velocity shows that the Earth does not move in one plane. Similar motion has the
Sun in its trajectory in the Milky Way and the Moon on its trajectory around the Earth.
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We consider now the projection of the spin velocity on the ecliptic plane, i.e.,

Vh = 9 cos2 	t sin2 γ cos γ

2π · 5.6143

g

w

∫ 5.614

0
dZ

∫ √
5.6142−Z2

0
dX

∫ π

0

B sin2 β

A2 + B3

X5 dβ

X2 + Z2 . (16)

It takes values between 0 (when cos 	t = 0, i.e., at the equinoxes) and takes its maximal
value of order 1 m/s near the summer solstice and the winter solstice. This velocity may not
be completely realized, but only partially, because of the influence from the Sun and the other
planets. We will explain this decreasing of the spin velocity according to the Sun and one
planet, for example, Jupiter, neglecting temporarily the influence from the other planets.

Let Tj be the gravity center between the Sun and Jupiter, let d j be the distance between
Tj and the center of the Sun and let m j be the mass of Jupiter. Let us denote by U the
spin velocity of the Earth, having in mind the influence of the solar system. So, the angular
velocity of the Earth will be U/R. Because of the gravitation between the Earth and the Sun,
the distance Earth–Sun should be preserved and so, the Sun will be rotated with the same
angular velocity U/R around the point Tj . Jupiter will not be rotated as the Sun, because the
gravitation force between the Earth and Jupiter is too small to preserve the distance Earth–
Jupiter. So, Jupiter will be only translated as the Sun, such that the direction Sun–Jupiter will
change only according to their mutual gravitational force. We denote by I the moment of
inertia of the Sun around the axis of rotation through the point Tj . Using that the distance
between the Earth and Tj is close to R, we obtain the following equation

mVhR = mUR + U

R (I + Md2
j ),

and using that d j = m jr j
M+m j

≈ m jr j
M , we obtain that U = Vh

k , where k is the following
coefficient

k = 1 + I

mR2 + m2
j r

2
j

MmR2

Now, we conclude that I
mR2 is the influence of the Sun, while

m2
j r

2
j

MmR2 is the influence of
Jupiter in decreasing the spin velocity Vh . The distance r j and the mass m j are well known
and if we take that I = 5.7 × 1046 kg m2 according to the available data (for example [20]),
we obtain that k = 1 + 0.426 + 8.22 = 9.646. We notice that the influence from Jupiter
is much larger than the influence from the Sun. Indeed Jupiter has its influence through the
change of the barycenter. Its influence through the acceleration will be discussed later with
the discussion of the influence of the Moon.

Now, let us consider the influence of the other planets. Analogously to the coefficient
8.22 for Jupiter, the corresponding coefficients for Saturn, Neptune and Uranus are 2.466,
0.7934 and 0.229, respectively, while the influence from the other planets is negligible.
Hence, we can conclude that the total influence of the Solar system is approximately k =
1 + 0.426 + 8.22 + 2.466 + 0.7934 + 0.229 = 13.138, i.e., the real spin velocity of the
Earth is U = Vh

13.14 . Now we should explain why we consider the influences from the planets
mutually independent. Indeed, one can suggest that instead of the gravity center between the
Sun and Jupiter to consider the gravity center between the Sun and all planets except the
Earth. This is not convenient because the planets do not preserve the distances between each
pair of them and so, they participate independently in decreasing the spin velocity Vh . In
case of the Moon, it should not have analogous contribution to the planets because it is more
related directly to the Earth via a binary system, than through the barycenter.
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We will prove that the spin velocity induces angular velocity in the ecliptic plane which
is given by

W = −U ′

2v
, (17)

and the direction is also orthogonal to the ecliptic plane, where v = 30 km/s is the velocity
of the Earth in the ecliptic plane. Assuming that v is constant, we make deviation of about
± ε/2 = 0.83%. The obtained angular velocity W should be multiplied by cos γ = 0.917,
because the observed length of the day is measured with respect to the spinning Earth, but
not with respect to the ecliptic plane.

The required formula will be obtained via the law of preserving the energy. There are
three energies of the Earth:

E1 = me|( �R × (�v + �U ))′|
where �v is the velocity of 30 km/s around the Sun. Since �R × �v is a constant, only the spin
velocity has influence, i.e.,

E1 = me|( �R × �U )′| = meRU ′.

This (potential) energy appears in case of perturbations in the classical Newtonian orbits in
gravitational field. The second energy is the classical one

E2 = me

(
1

2
v2 − GMs

R

)
.

Since we consider circular trajectory, it is convenient to write in the form

E2 = me

(
1

2
v2 − R2	2

)
.

This energy remains unchanged for a classical trajectories without perturbations. In case
of additional angular velocity W locally of the Earth, not necessary on the trajectory, the
Earth will move with the same inertial velocity v and the angular velocity will be 	 + W . It
leads to the third energy

E3 = me

[1

2
v2 − R2(	 + W )2

]
.

When appears the spin velocity U , instead of the energy E2 we have the energy E3 and
the law of preserving the energies states that E3 = E2 + E1, i.e.,

me

[1

2
v2 − R2(	 + W )2

]
= me

(1

2
v2 − R2	2

)
+meRU ′.

Since W is very small, W 2 may be neglected and this equation can easily be written in
the form

U ′

R + 2	W = 0,

W = − U ′

2R	
= −U ′

2v
.

Further, we discuss the influence of the Moon to the spin velocity of Earth. According
to the astronomical data, it is easy to calculate that the acceleration of the Earth toward the
Moon is about 187 times smaller than the acceleration g toward the Sun. It changes mainly

123



  450 Page 16 of 20 Eur. Phys. J. Plus         (2020) 135:450 

Fig. 4 Graph of the function W as a function of α = 	t . The length of day achieves its maximum at angle
3π/4, i.e., about 45 days after each equinox (ϕ = π/2), which means that the angular velocity achieves its
minimal value

the magnitude of g, because the direction has a minor role. According to (16) and assuming
that the function under the triple integral is almost constant as a function of g, we conclude
that the spin velocity of the Earth should be approximately 187 times smaller, which gives
variation of the magnitude of about 0.53%, i.e., its corresponds in variation of 0.15 ms with
a period of 1 month. The acceleration of the Earth toward the Jupiter, or another planet, is
at least 90 times smaller than the acceleration toward the Moon. So the planets do not have
any additional influence than that via the solar barycenter. Beside the annual and semiannual
variations in length of the day, it is also measured variation of period of 10 days and maximal
amplitude of about 0.1 ms.

In Fig. 4 is shown the graph of the function W as a function of α = 	t , where 	t = π/2
corresponds to the spring or autumn equinox. The calculation is done using the data about
the densities of the shells from Remark 3, where the integration is analogous to (15). The
amplitude of this function W is 2.516 × 10−13 s−1. Further, this values should be multiplied
with cos 23.50 because the variation of the length of the day is measured from the Earth.
Hence, we obtain for the amplitude 2.307 × 10−13 s−1, which is 94.56% of the value
2.44 × 10−13 s−1, which is indirectly measured via the length of day. Hence, the predicted
value is 5.44% less that the measured value. The maximal value of the LOD achieved at May 8
also fits with the observations. We commented that the influence of Moon and the eccentricity
for departures is less 1%. Also the precise knowledge of the moment of inertia of the Sun
will improve the expected value. The rest of influence is probably caused by the atmosphere.
But we cannot do anything with the influence of the Kuiper belt. The atmospheric influence
is not negligible.

Remark 4 In the previous calculations, we assumed that the Earth is a rigid body. The exis-
tence of the liquids inside the Earth and the surface water from the oceans and the seas
changes the previous results. In general, when we calculate the resultant spin velocity, many
components in case of rigid body are mutually canceling. But in case of the surface liquids,
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(a) (b) (c)

Fig. 5 Position of the Earth toward the Sun. In case a, it is assumed that the Earth is not moving. In case of b,
the distance R changes into r such that the contraction of the length of the trajectory in motion 2πR seems
to be observed as a trajectory with smaller radius r . This can easily be evident in case of a spinning rotational
disc. In case c, there should appear a rotation for angle ϕ, since according to the special relativity there is no
contraction orthogonal to the motion. If there is no rotation, there will be a contradiction to this relativistic
effect

it tends to move and hence there appears some turbulence. Probably, this is related to the
effect of tides, but this is only a suggestion for further research.

4.2 Annual variation

This variation is of different nature, and it is a relativistic effect, including the velocity of the
light. We refer to the papers [21,22]; however, we start with the necessary preliminaries. It
is convenient to imagine the Earth as a cube or square with edge �R in the ecliptic plane
(Fig. 5a). Indeed, the final result will not depend on the shape and the size of the considered
body. The largest and the smallest distances to the Sun are R + �R and R, respectively.
Since the Earth is moving with an almost constant velocity v, instead the orbits with lengths
2π(R + �R) and 2πR the points B and A pass orbits with lengths 2π(r + �r) and 2πr
such that (Fig. 5b)

R
√

1 − v2

c2 = r, (18)

where v = rw and hence,

r = R√
1 + R2w2

c2

. (19)

Since there does not exist contraction orthogonal to the direction of motion SA′, there will
exist locally a rotation for angle ϕ (Fig. 5c) such that cos ϕ = r

R and ϕ < 0. Indeed, the
point B ′ appears later in the time, after the appearance of A′. Namely, there is a time delay
of B ′ with respect to A′.

The motion of the Earth in the solar system satisfies v2

2 − GM
R = C = const, and hence,

v =
√

2C + 2GM

R . (20)
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Since the trajectory is close to circle, we can suppose that Rw = v, and from (19)

r

R ≈ 1 − 1

2

v2

c2 = cos ϕ

and hence, ϕ2 = v2

c2 and ϕ ≈ − v
c , since ϕ < 0. Thus, for the angular velocity from (20) we

obtain

W = dϕ

dt
= −1

c

dv

dt
= 1

c

1

2v

2GM

R2

dR
dt

.

Using that the eccentricity ε ≈ 0.0167 is small, approximately it holds R = R0(1 −
ε cos 	t), where R0 is a constant and 	t = 0 on January 3–4, when the Earth is on the
closest distance to the Sun. So,

W = 1

cv

GM

R2 R0(−ε	) sin 	t = −gε

c
sin 	t,

and hence |W |max = gε
c . Since this angular velocity is in the ecliptic plane, the predicted

value is

|W |max = gε

c
cos 230.5 = 3.022 × 10−13 s−1,

while the maximal amplitude is 5.36% less. Probably, the departure appears from the atmo-
sphere.

Now we will determine the phase displacement of the obtained sinusoidal function. For this
reason, we will calculate approximately the vector of velocity �v, apart from the determination
of its module.

Starting from �R = R0	(cos 	t, sin 	t, 0) + R0(1 − ε cos 	t)	(− sin 	t, cos 	t, 0),

we obtain

�v = dR
dt

= R0ε	 sin 	t (cos 	t, sin 	t, 0) + R0(1 − ε	t)	(− sin 	t, cos 	t, 0).

Now we make a distinction between vtan, which is the coefficient in front of
(− sin 	t, cos 	t, 0) and vrad, which is the coefficient in front of (cos 	t, sin 	t, 0). In case
of tangent component we have ϕtan = − 1

c vtan, but in case of radial component (v �= const

from r = R√
1+R2w2

c2

we obtain dr = (dR)
(
1− 3

2
(Rw)2

c2

)
, and thus, from dr

dR = cos ϕ it follows

ϕ2
rad = 3(Rw

c )2, ϕrad = √
3 v
c . So, in both cases we introduce a coefficient of proportionality

k, such that

ϕ′
tan = −k

c

dvtan

dt
= −k

c

d[R0	(1 − ε cos 	t)]
dt

= k

c
R0	

2ε(− sin 	t) = k
gε

c
(− sin 	t)

and

ϕ′
rad = −k

√
3

c

dvrad

dt
= −k

√
3

c

d[R0	ε sin 	t)]
dt

= −k
√

3

c
R0	

2ε(cos 	t) = k

√
3gε

c
(− cos 	t).

The coefficient k > 0 should be determined from the condition

max(ϕ′) = max(ϕ′
tan + ϕ′

rad),
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i.e., ϕ′ and ϕ′
tan + ϕ′

rad differ only by the phase. So,

gε

c
= max

(
k
gε

c
sin 	t + k

3gε

c
cos 	t

)

1 = k · max(sin 	t + √
3 cos 	t) = 2k · max

(
sin

(
	t + π

3

))
= 2k.

So, k = 1
2 and

W = −kgε

c
(sin 	t + √

3 cos 	t) = −gε

c

(
1

2
sin 	t +

√
3

2
cos 	t

)
= −gε

c
sin

(
	t + π

3

)
,

and its projection on the spinning axis is given by

W = −gε

c
sin

(
	t + π

3

)
cos γ.

So, W has a period T = 2π
	

= 1y, and it minimizes for 	t = π
6 , starting from the January 3

when the Earth is the closest to the Sun and then 	t = 0. Thus, the minimum happens after
365.25

12 ≈ 30.4 days when the Earth will be the closest to the Sun, and it is about February 3.

5 Conclusion

This paper has mainly two objectives. The first objective is to present the recently devel-
oped theory about the so-called induced spin velocity in the frame of a multidimensional
space-time. The second objective is to apply this spin velocity in some concrete cases. As a
consequence, it is a test for the theory. Firstly, it is applied on a spinning body in a gravita-
tional field where there is a precession of the spinning axis for both cases: when the spinning
body is in free fall motion and when the spinning body is placed on a horizontal plane. The
next application is explanation of the semiannual variation of the length of day. Although
there are several perturbations of this effect, it is explained with about 5% departure of obser-
vational data and it is the first comparison of the spin velocity with some experimental data.
In the paper, it is considered also the annual variation of the length of day, although it is not a
consequence of the spin velocity. It is a consequence of the results in the recently published
papers in order to avoid the known question whether the boundary points on a spinning disc
with large radius will move with velocity larger than c. In this case, the departure between
the predictions and measurements is also about 5%.
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10. K. Trenčevski, Special relativity based on the SO(3,C) structural group and 3-dimensional time. Math.
Balk. 25(1–2), 193–201 (2011)
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14. K. Trenčevski, On the group of isometries of the space, in BSG Proceedings 21, Proceedings of the
International Conference “Differential Geometry—Dynamical Systems” DGDS-2013, 10–13 October,
Bucharest-Romania, pp. 193–200 (2013)
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