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INTRODUCTION

It is generally believed that the HOH bending frequency incre-
ases on going from a "free" H20 molecule in the gas-phase to a
water molecule in a crystallohydrate [1). Thus, both the
normal-coordinate treatment [(2) and the recent results of some
SCF calculations [3] seem to indicate that the frequency of the
HOH bending should increase in all cases of water molecules
found in crystallohydrates. However there are few cases
(KMgPO4-H20 and 1its nickel analogue being the most striking
examples) in which it has been shown (cf. Ref. [4] and the
ferences therein) that the HOH bending vibrations appear
appreciably lower than 1595 cm-1! (the value of HOH bending
frequency in the gas-phase). In the present paper an attempt
will be made to reveal some of the possible reasons for the
lowering of the HOH bending frequency, using a simple model for
water molecules undergoing bending vibrations.
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THE MODEL

Let us consider a water molecule in which the bending coordinate
is the only normal coordinate and the amplitudes of the atoms
during the vibration are reasonably small. The Lagrange function
for such a water molecule (see. Fig. la) may be written as

Ly = m(u12 + 032)/2 + mai22/2 - k152/2 (1)

where m1 and m2 are the masses of the H and O atom respectively,
ui, uz and us are the displacements of atoms 1, 2 and 3, k is
the force constant and § 1s the bending internal coordinate.

Let us now consider a water moleculé in a crystallohydrate (see
Fig. 2b). We assume that the only interaction of the hydrogen
atom 1 and its surrounding is the shielded electrostatic one
with the proton-acceptor 4 (the same holds for atoms 3 and 5)
and that this interaction may be treated as a small perturbation
to the energy spectrum of the vibrating water molecule (the
distance r is about twice the distance I). We also assume that
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Fig 1 : a) "Free” water molecule ; b) Water molecule in a
crystallohydrate

the values for the HOH angle and the distance I are the same as
in the "free" water molecule (in fact, there are small changes
in these quantities, but we feel that this simplification will
not affect appreciably the final results in this qualitative
approach). The mass of the proton-acceptor 4 (5) is, as usually,
large enough and so the distance R is essentially unchanged
during the water bending vibration.

Starting with these assumptions, the Lagrange function L of the
system schematically presented in Fig. 1b, may be written as

L = L1 - 2V (2)

where V(r) is the potential energy of the interaction between
atoms 1 (3) and 4 (5), the quantity r being

r= (R + 12 - 21Rcos(y - §))x/2 ; Yy =8 - a (3)
When § = 0, r = ro (ro being the equilibrium distance).
If Yy =0 (i.e. the hydrogen bonds are linear) r 1is always

greater than ro and the attractive part in the potential V(r)
becomes dominant. On the other hand, if Y # 0 then r > ro for
y - & >y and the potential is attractive, whilst r < ro for
Yy — & <y and the potential is, mainly, a repulsive one. To
summarize, the potential energy may, in general, be presented as
consisting of two terms

VWr) = -Ki/r° + K2/ rm (4)
the first being the attractive and the second - the repulsive
one. The quantities K1, K2, m and n are some empirical

non-negative constants.

As mentioned earlier, the amplitudes of the vibration are small.

This allows us to expand the cos(Yy - §) term of Eqn. (3) into a
power _2ries of the small quantitx §. Omiting terms of order
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higher than 2, the potential ¥(r) may be written as

V(r) = Kzaro=m - Kiro—n - (mKaro-m - nKiro—-n)1lR-cosy-62/(2re2) -
- [m(l + m/2)K2ro-m - n(1 + n/2)Kiro-n)-sin2y-62.(1R/ro2)2 +
+ (mKaro—-m - nKiro=n) -siny- §1R/ ro2 (5)

Using the condition V'(r) = 0, for the equilibrium state, one
obtains

(mK2ro~-® - nKiro-n)-siny = 0 (8)

For nonlinear hydrogen bonds (y # 0) the Egn. (8) is fulfilled
if and only if

ar

mK2/nKi1 = roe<m-n> > ( (7)

Making wuse of equations (1), (5) and (7), the Lagrange function
(2) for the bending wsater molecule in the cristalline
environment may be written as

L = mi(u012 + 432)/2 + m2022/2 -
- [k12/2 - 2nK1(m—n)~(lR/roz)z-ro‘"~sin37]‘62 (8)

It is obvious that Egn. (8) is the Lagrange function for an
one-dimensional harmonic oscilator, the frequency of which is

w2 = 2(k - 4nK1(m-n)R2ro‘“'2~sin2Y]-(l+2m1-sin20/m2)/M1 (8)

The vibrational frequency of the “free" water molecule may be
obtained from equation (8) if the second term in the square
brackets is omitted. It is this term that describes the change
of the HOH bending freguency (due to hydrogen bonding), for a
water molecule in a crystallohydrate. This term may be either
positive (if m > n) or negative (if m < n). In the first case
the condition K2/K1 < rom-n has to be sattisfied,” whilst in
the second the ratio K2/K1 will be larger than ro®-n, From the
physical point of view, the existence of both possibilities may
be justified by the fact that r > 1, which ensures that
repulsive interaction between atoms 1 (3) and 4 (5) may appear
if m > n as well as if m < n, depending on the magnitudes of
K1 and K2. The values of these constants, namely, may vary for
different crystallohydrates and are expected to depend on ro.

For Y = 0, an equation analogous to Egn. (89) may be obtained

w2 = 2(k - (mK2ro—m - nKiro=n) R/ 1rs82](1+2m1-sin20/m2)/m (10)
In this case (linear hydrogen bonds) r > re during the vib-
ration and the attractive part of the potential dominates over
thes repulsive one. As a consequence, the second term in the

square brackets of Eqn. (10) is negative and the frequency of
the vibration increases.
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CONCLUSION

The model employed in the present paper is admittedly a rather
simple and crude one. Nevertheless it shows that conditions le-
ading to a lowering of the HOH bending freguencies could exist.
A future goal is to make the model more sophisticated and more
in agreement with the experimental findings.
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