SPECTROSCOPY LETTERS, 1(3), 117-120 (1968) # INFRARED EVIDENCE FOR THE NON-LINEARITY OF THE WO GROUP IN SOME TUNGSTYL CHELATES B. Šoptrajanov, A. Nikolovski, and I. Petrov Hemiski institut Prirodno-matematički fakultet Skopje, Yugoslavia The geometry of the dioxotungsten(VI) (tungstyl) group, WO₂²⁺ is not known with certainty. To the best of our knowledge, no detailed crystallographic study has been made on compounds containing this group and the spectroscopic data are also scarce. 1-3 In a search for further data on the stretching frequencies and the geometry of the WO₂²⁺ group, we investigated several tungstyl chelates of the WO₂(Chelate)₂ type, with the chelating agents being: acetylacetone (HAA),⁴ dibenzoylmethane (HDHM), 8-quinolinol (HQ) and d-benzoinoxime (HBOx). ### EXPERIMENTAL The chelates with 8-quinolinol and d-benzoinoxime were prepared by standard analytical procedures and those with acetylacetone and dibenzoylmethane were first synthetized by one of us. ## RESULTS AND DISCUSSION TABLE 1 lists the frequencies (in cm⁻¹) of the bands observed in the 1000 - 900 cm⁻¹ region and attributable to # B. SOPTRAJANOV, A. NIKOLOVSKI, AND I. PETROV W=O stretching vibrations, as well as those reported by Kharitonov and Buslaev and by Hull and Stiddard. Where more bands were found in this region, the WO₂ stretching bands were easily identifiable owing to their sharpness. On similar grounds, the broad 880 cm⁻¹ band reported by Kharitonov and Buslaev is not considered to arise from W=O stetching of the WO₂ group. TABLE 1 Observed W=O Stretching Frequencies (in cm⁻¹) and Calculated Approximate Force Constants (in md/A) for Some Compounds Containing WO 2+ Group | | ν ₁ | ν ₃ | k | k | |---------------------------------------|-------------------|------------------|------|------| | WO ₂ (AA) ₂ | 954 | 908 | 7.52 | 0.42 | | WO_(DEM) | 951 | 905 | 7.47 | 0.42 | | WO_Q_ | 942 | 900 | 7.36 | 0.39 | | WO ₂ (BOx) ₂ | 945 | 908 | 7.45 | 0.35 | | WO ₂ BipyCl ₂ a | 955 ^b | 916 ^b | 7.59 | 0.37 | | WO BipyBr a | 954 ^b | 907 ^b | 7.51 | 0.43 | | K2/WO2F4/ | `954 [°] | 910 ^e | 7.54 | 0.41 | a : Bipy = 2,2' - bipyridyl; b : Ref. 3; c : Ref. 1 The assignment of the higher-frequency band to the symmetric, V_1 mode and that of the lower-frequency band to the asymmetric, V_3 mode was made by analogy with the assignment of the corresponding modes in compounds containing the $/\text{MoO}_2F_4/^{2-}$ ion^{2,7} and on the basis of the invariably lower intensity of the former band. The fact that in all investigated chelates the two W=O stretching bands are of comparable intensity strongly indi- cates a cis-configuration (skeletal symmetry C_{2V}) of the WO_2 group. The whole chelate molecules would then belong to the C_2 point group (or very nearly so) with a two-fold axis as the only element of symmetry, i.e. would have a geometry similar to that found for TiQ_2Cl_2 . The approximate force constants were calculated using the expressions given by Cotton and Wing⁹ and assuming reasonable values for the OWO angle $(95-105^{\circ})$. The constants listed in TABLE 1 were calculated assuming an OWO angle of 95° , similar to the value of the OMOO angle found in the $/\text{MoO}_2F_4/^{2-}$ ion. The Changing the OWO angle from 95° to 105° does not significantly alter the stretching force constants k, whereas the stretch-stretch interaction constants k₁ for 100° are for approximately 0.05 and those for 105° for approximately 0.1 md/A higher than those listed in TABLE 1. The investigation of the corresponding molybdenum compounds is presently under way and the results will be reported shortly. ## ACKNOWLEDGEMENT We would like to thank Prof. Dušan Hadži for reading the manuscript and for the useful sugestions. ### REFERENCES - 1. Yu. Ya. Kharitonov and Yu. A. Buslaev, Izv. Akad. Nauk SSSR, 5, 808 (1964). - Yu. A. Buslaev, Yu. Ya. Kharitonov, and R. L. Davidovich, Izv. Akad. Nauk SSSR, Neorg. Mater., 3, 589 (1967). - 3. C. G. Hull and M. H. B. Stiddard, J. Chem. Soc. (A), 1966, 1633. - 4. B. Šoptrajanov, A. Nikolovski, and I. Petrov, submitted to Spectrochimica Acta. - B. SOPTRAJANOV, A. NIKOLOVSKI, AND I. PETROV - 5. A. I. Vogel, A Text-Book of Quantitative Inorganic Analysis, Longmans, Green and Co., London, 1953. - 6. A. Nikolovski, to be published. - 7. D. Grandjean and R. Weiss, Bull. Soc. Cim. France, 1967, 3049. - 8. A. G. Swallow and B. F. Studd, Chem. Communs., 1967, 1197. - 9. F. A. Cotton and R. M. Wing, Inorg. Chem., 4, 867 (1965).