SPECTROSCOPY LETTERS, 1(3), 117-120 (1968)

INFRARED EVIDENCE FOR THE NON-LINEARITY OF THE WO GROUP IN SOME TUNGSTYL CHELATES

B. Šoptrajanov, A. Nikolovski, and I. Petrov Hemiski institut Prirodno-matematički fakultet Skopje, Yugoslavia

The geometry of the dioxotungsten(VI) (tungstyl) group, WO₂²⁺ is not known with certainty. To the best of our knowledge, no detailed crystallographic study has been made on compounds containing this group and the spectroscopic data are also scarce. 1-3

In a search for further data on the stretching frequencies and the geometry of the WO₂²⁺ group, we investigated several tungstyl chelates of the WO₂(Chelate)₂ type, with the chelating agents being: acetylacetone (HAA),⁴ dibenzoylmethane (HDHM), 8-quinolinol (HQ) and d-benzoinoxime (HBOx).

EXPERIMENTAL

The chelates with 8-quinolinol and d-benzoinoxime were prepared by standard analytical procedures and those with acetylacetone and dibenzoylmethane were first synthetized by one of us.

RESULTS AND DISCUSSION

TABLE 1 lists the frequencies (in cm⁻¹) of the bands observed in the 1000 - 900 cm⁻¹ region and attributable to

B. SOPTRAJANOV, A. NIKOLOVSKI, AND I. PETROV

W=O stretching vibrations, as well as those reported by Kharitonov and Buslaev and by Hull and Stiddard. Where more bands were found in this region, the WO₂ stretching bands were easily identifiable owing to their sharpness. On similar grounds, the broad 880 cm⁻¹ band reported by Kharitonov and Buslaev is not considered to arise from W=O stetching of the WO₂ group.

TABLE 1

Observed W=O Stretching Frequencies (in cm⁻¹) and Calculated Approximate Force Constants (in md/A) for Some Compounds

Containing WO 2+ Group

	ν ₁	ν ₃	k	k
WO ₂ (AA) ₂	954	908	7.52	0.42
WO_(DEM)	951	905	7.47	0.42
WO_Q_	942	900	7.36	0.39
WO ₂ (BOx) ₂	945	908	7.45	0.35
WO ₂ BipyCl ₂ a	955 ^b	916 ^b	7.59	0.37
WO BipyBr a	954 ^b	907 ^b	7.51	0.43
K2/WO2F4/	`954 [°]	910 ^e	7.54	0.41

a : Bipy = 2,2' - bipyridyl; b : Ref. 3; c : Ref. 1

The assignment of the higher-frequency band to the symmetric, V_1 mode and that of the lower-frequency band to the asymmetric, V_3 mode was made by analogy with the assignment of the corresponding modes in compounds containing the $/\text{MoO}_2F_4/^{2-}$ ion^{2,7} and on the basis of the invariably lower intensity of the former band.

The fact that in all investigated chelates the two W=O stretching bands are of comparable intensity strongly indi-

cates a cis-configuration (skeletal symmetry C_{2V}) of the WO_2 group. The whole chelate molecules would then belong to the C_2 point group (or very nearly so) with a two-fold axis as the only element of symmetry, i.e. would have a geometry similar to that found for TiQ_2Cl_2 .

The approximate force constants were calculated using the expressions given by Cotton and Wing⁹ and assuming reasonable values for the OWO angle $(95-105^{\circ})$. The constants listed in TABLE 1 were calculated assuming an OWO angle of 95° , similar to the value of the OMOO angle found in the $/\text{MoO}_2F_4/^{2-}$ ion. The Changing the OWO angle from 95° to 105° does not significantly alter the stretching force constants k, whereas the stretch-stretch interaction constants k₁ for 100° are for approximately 0.05 and those for 105° for approximately 0.1 md/A higher than those listed in TABLE 1.

The investigation of the corresponding molybdenum compounds is presently under way and the results will be reported shortly.

ACKNOWLEDGEMENT

We would like to thank Prof. Dušan Hadži for reading the manuscript and for the useful sugestions.

REFERENCES

- 1. Yu. Ya. Kharitonov and Yu. A. Buslaev, Izv. Akad. Nauk SSSR, 5, 808 (1964).
- Yu. A. Buslaev, Yu. Ya. Kharitonov, and R. L. Davidovich, Izv. Akad. Nauk SSSR, Neorg. Mater., 3, 589 (1967).
- 3. C. G. Hull and M. H. B. Stiddard, J. Chem. Soc. (A), 1966, 1633.
- 4. B. Šoptrajanov, A. Nikolovski, and I. Petrov, submitted to Spectrochimica Acta.

- B. SOPTRAJANOV, A. NIKOLOVSKI, AND I. PETROV
- 5. A. I. Vogel, A Text-Book of Quantitative Inorganic Analysis, Longmans, Green and Co., London, 1953.
- 6. A. Nikolovski, to be published.
- 7. D. Grandjean and R. Weiss, Bull. Soc. Cim. France, 1967, 3049.
- 8. A. G. Swallow and B. F. Studd, Chem. Communs., 1967, 1197.
- 9. F. A. Cotton and R. M. Wing, Inorg. Chem., 4, 867 (1965).