ОПРЕДЕЛУВАЊЕ НА НЕКОИ МАКРО И МИКРОЕЛЕМЕНТИ ВО КРУШИ СО АТОМСКА АПСОРІІЦОНА СПЕКТРОФОТОМГТРИЈА

Л. Сиваков, Мирјана Богданова, Б. Богданов*

КРАТОК ИЗВАДОК

Со помош на атомска апсорпциона спектрофотометрија вршевме определување на натриум, калиум, калиимм магнезиум, железо, бакар, цинк и манган во плодови од поважните сорти круши (Боскова, Клержо, Кантарка и Красанка). Плодовите потекнуваат од плантажниот насал на АК Лозар Титов Велес.

Констатираное дека најмногу застапенелементе калиумот со 81.48% од вкупно испитуваните минерални материи, а најголема варијација помеѓу сортите е во содржината на манган ($\mathrm{CV}=43.83 \%$).

ATOMIC ABSORPTION SPECTROPHOTOMETRIC DETERMINATION OF SOME MACRO AND MICRO ELEMENTS IN PEARS

L. Sivakov, Mirjana Bogdanova, B. Bogdanov*

SUMMARY

Concentration of the elements $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Zn}$ and Mn were measured in the fruit of more important cultivars of pears (Pyrus Communis) (Bosc, Clairgeau, Cure, Passe Crassone) by means of flame atomic absorption spectrophotomentry. The fruit were taken from the plantation of AK Lozar - T. Veles.

The results showed that the most present element among all examined mineral matters was $\mathrm{K}(81.48 \%)$, but Mn revealed the greatest variation related to the different pears cultivars ($\mathrm{CV}=43.83 \%$).

[^0]
ВОВЕД

Крушите се користат во свежа, ладена и конзервирана состојба. Поради нивниот специфичен вкус и арома, како и нивната биолошка вредност се користат во голема мера во исхраната. Познато е дека имаат долга сезона на користење, почнувајки од втората половина на јуни, кога зреат летните сорти, па сѐ до април, кога можат ла се чуваат зимските сорти.

Крушите претставуваат богат извор на хранливи материи како и растопливи така и нерастопливи во клеточниот сок. Познато е дека минералните материи заедно со витамините играат улога на заштитни материи во човечкиот организам. Минералните материи се наоѓаат како во слободна - јонизирана форма, така и сврзана во неоргански соединенија или со органски материи. Тие се регулатори на физиолошките прощеси (пред сѐ како соодветен дел на поодлелни ферменти) и како пуфери.

Содржината на макро и микроелементите во крушите е во зависност од сортата, степенот на зрелост, како и од климатските и почвените услови (Велков и сор., 1970, Странжев и сор., 1972, Илиев и сор., 1976, Покровский, 1976, Нестерин и сор., 1979, Niketić-Aleksić 1976).

Имајќи го предвидзначенето на макро и микроеле ментите за правилно одвивање на физиолошките прощеси во организмот на човекот, щелта беше да изврниме испитување на нивната содржина во некои есснски и зимски сорти круши.

МАТЕРИИААТ И МЕТОДИ НА PAFOTA

Крушите потекнуваат од пантажниот насад на АК ЈІозар - Титов Велес. Испитувани се есенски (Боскова, Клержо) и зимски сорти круши (Кантарка и Красатка). Плодовите се анализирани во консумативна зрелост. Подготвувањето на пробата е вршено по аналитички стандарди (Joslin, 1970).

Плодовите за анализа најнанедсе лупат, се мелат и се хомогенизираат. Од хомогенизираната маса за секоја сорта се мери но три наралелни проби од околу 7 g . Пробата се става во стандардизирано пориеланско лонче, се суши претходно во сушилница, а потоа се става во муфолна печка постепено покачувајќи ја температурата ло $550^{\circ} \mathrm{C}$ и оваа температура се држи 16 часа т.е додека примерокот не стане бс.л. Сувиот остаток се раствора во 0,1 М раствор одхлороводородна киселина и се префрлува во одмерна тиквина од $25 \mathrm{~cm}^{3}$ и се дополнува со истата киселина. При мерењето на одлелните еле менти се врши разредување на пробата $1: 50$ со $0,23 \%$ стронниум хлорил за да се отстрани влијанисто на фосфатите (Christijan и сор., 1970). На ист начин се разредува и стандардниот раствор и контролната проба. Определуването се врни со атомско апсорпионен спектрофотометар OPTON FMD-3. Податоците и параметрите пто беа користени при мерењата се дадени во таб. 1.

Таб. 1. - Некои параметри употребени при мерењата
Table. 1. - Instrument Description and Parameters

Eлемент Element	Спектр. линии нам. за анализа nm Spectral lines used for Analysis nm	Spectral Band Pass nm	Lamp Curent mA
Na	589.6	0.4	10
K	766.5	0.5	10
Ca	422.7	0.4	20
Mg	285.2	0.8	20
Fe	248.3	0.2	20
Cu	324.8	0.1	15
Zn	213.9	0.3	15
Mn	279.5	0.2	7

Ситестандарлни раствори се ириготвениоданалитички чисти реагенси. Стандардните раствори за магнезиум, железо, цинк и бакар се ириготвени од соодветни метали растворени во хлороводородна киселиналоде ка растворите за натриум, калиум, калциум и мангансе приготвени одсоодветни карбонати. Основните стандарли се со кониснтраиија $1 \mathrm{~g} / \mathrm{dm}^{3}$. Се приготвува заеднички стандарден раствор со разредувань и тој содржи $\mathrm{Na} 4,6 \times 10^{-3} / \mathrm{g} / 100 \mathrm{~cm}^{3}$, $\mathrm{K} 64,2 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{Ca}, \mathrm{Mg} 10 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{Fe} 0,2 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{Cu}, \mathrm{Zn}$ $0,1 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{Mn} 0,05 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}$.

Количествата на елементите во стандардните раствори се приближни за секој елемент со количествата што се содржат во пробите од круши. Содржината на железо, бакар, пинк и мангане многу помала одсолржината на натриум, калиум, калциум и магнезиум. Во плодовите ол круши вршевме испитување на линеарноста помеѓу релативниот интензитет на сигналот и конщентрацијата на железо, бакар, џинк и манган во заслнички стандарден раствор во присуство на константна кониентращија од $\mathrm{Na} 4,6 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}$, K $64,2 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$, Са, $\mathrm{Mg} 10 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~cm}^{3}$ (Граф.1.)

Во граф. 2 и 3 е прикажана зависноста помеѓу релативниот интензитет на сигналот и концснтрацијата на натриум, калниум и магнезиум, како и на калиум во заеднички стандарден раствор. Од графиконите може да се констатирадека постоилинеарна зависност помеѓу интензите тот насигналот и дадената конщнтрација на испитуваните елементи.

Добиените резултати за содржината на поодлелните елементи се статистички обработени (Erdeljan, 1962).

$\mathrm{Zn}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Fe}$ Concentration (mg/ $100 \mathrm{~cm}^{3}$)
Сл. 1. - Аналитичка крива за $\mathrm{Zn}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Fe}$ во матичен раствор кој содржи константна коннентранија $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$ во 0.1 M HCl (види во текстот)
Fig. 1. - Analitical curve for $\mathrm{Zn}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Fe}$ in matrix solution containing constant Na, K, ('a and Mg in $0,1 \mathrm{M} \mathrm{HCl}$ (see text)

$\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}$ Concentration ($\mathrm{mg} / 100 \mathrm{~cm}^{3}$)
Сл. 2. - Аналитичка крива за $\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}$ во матичен раствор 0.1 M HCl
Fig. 2. - Analitical curve for $\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}$ in matrix solution 0.1 M HCl

Сл. 3. - Аналитичка крива за К во матичен раствор $0,1 \mathrm{M} \mathrm{HCl}$
Fig. 3. - Analitical curve for K in matrix solution $0,1 \mathrm{M} \mathrm{HCl}$

РЕЗУЛТАТИ И ДИСКУСУЈА

Резултатите ол испитувањата за минералниот состав од поважните сорти круши се дадени во таб. 2. Од табелата може да се констатира дека содржината на ноодлелните еле менти е различна. Најмногу застапен елемент е калиумот и неговата содржина се движи од $101,82 \mathrm{mg} \%$ кај сортата Клержо до $115,59 \mathrm{mg} \%$ кај сортата Кантарка или просек за сите цспитувани сорти изнесува $106 \mathrm{mg} \%$. Испитуваните сорти не се разликуваат по содржината на калиум, што се потврдува со коефициентот на варијација кој изнесува $6,11 \%$.

Содржината на калииумот се движи од $6,99 \mathrm{mg} \%$ кај сортата Кантарка до $18,24 \mathrm{mg} \%$ кај сортата Боскова или нивната просечна содржина изнесува 11,79 $\mathrm{mg} \%$. Помеѓу испитуваните сорти постои голема варијација во содржината на калциум (CV $=42,39 \%$).

Магнсзиумоте застапен од $4,18 \mathrm{mg} \%$ кај сортата Кантарка до $7,39 \mathrm{mg} \%$ кај сортата Боскова или просечната содржина изнесува $5,69 \mathrm{mg} \%$. Варијациите во содржината на магиезиум се големи, што се потврдува со коефициентот на варијаиија $30,71 \%$.

Содржината на натриум се движи од $5,04 \mathrm{mg} \%$ кај сортата Кантарка до $6,97 \mathrm{mg} \%$ кај сортата Клержо или просек за сите испитувани сорти $6,05 \mathrm{mg} \%$. Постојат големи разлики во содржината на натриум што се потврдува со коефициентот на варијација ($17,33 \%$).

Од изнесените литературни податоци може да се констатира дека содржината на макроелементите е различна. Странджев и сор. (1972) наведуваат дека калиумот е застапен со $159,9 \mathrm{mg} \%$ кај Кантарка, $160,9 \mathrm{mg} \%$ кај Боскова и $188,1 \mathrm{mg} \%$ кај Красанка, додека пак содржината на калциум се движи од $27,40 \mathrm{mg} \%$ кај Кантарката ло $29,87 \%$ кај Красанка. Истите автори наведуваат дека сорти што содржат многу калиум се богати и со фосфор. Постои антагонизам меѓу содржината на калиум и фосфор со содржината на калииум. Илиев и сор. (1976) и Ве.лков и сор. (1970) наведуваат лека просечната содржина на калиум во крушите се движи од 28,8 до $96,0 \mathrm{mg} \%$, на калциумот од 3,4 до 14 mg \% а на магнезиумот од 2,0 ло $8,8 \mathrm{mg} \%$. Спорел нодатоиите на Покровскии (1976) и Нестерин и сор. (1979), просечната содржина на калиумот изнесува $155 \mathrm{mg} \%$, калциумот $19 \mathrm{mg} \%$, натриумот $14 \mathrm{mg} \%$ и магнезиумот 12 $\mathrm{mg} \%$. Ljubisavljević (1965) наведува лкеа просечната содржина на макро елементите е: калиумот $130 \mathrm{mg} \%$, калиимот $9-15 \mathrm{mg} \%$, натиру мот $3 \mathrm{mg} \%$ и магнезиумот $7 \mathrm{mg} \%$.

Разликите во содржината на макроелементите што се презентираат од авторите, како и резултатите ол нашите испитувања произлегуваат од различните методики на испитувањь и различните сорти.

Ако се изврши квантитативна анализа на застаненоста на ноодлелните макро минерални материи, ќе се констатира дека иснитуваните сорти содржат најмногу калиум. Кога би се индексирала вкупната содржина на испитуваните макроелементи со 100 , тогаш просечната застапеност на поодлелите минерали е како што слелува: калиумот е застапен со $81,85 \%$, калІциумот со $9,10 \%$, натриумот со $4,66 \%$ и магнезиумот со $4,39 \%$.

Од испитувањата извршени за микроелементите може ла се констатира дека содржината на железо се лвижи од $0,15 \mathrm{mg} \%$ кај Клержо до $0,25 \mathrm{mg} \%$ кај сортата Кантарка. Разликите во содржината на железо помеѓу испитуваните сорти е релативно голема, што се птоврдува со коефиниентот на варијанија (20,82\%).

Содржината на бакар се движи од $0,11 \mathrm{mg} \%$ кај сортата Кантарка до 0,23 $\mathrm{mg} \%$ кај сортата Боскова. Помеѓу испитуваните сорти се констатирани разлики, щто се потврдува со коефициентот на варијаиија ($32,02 \%$)

Содржината на цинкот се движи од $0,15 \mathrm{mg} \%$ кај сортите Боскова и Клержо до $0,17 \mathrm{mg} \%$ кај сортата Красанка. Помеѓу испитуваните сорти постои многу мала разлика во содржината на овој микроелемент (коефициснт на варијација 5,98\%).

Таб. 2. - Содржина на макро и микроелементи во некои сорти круши (средни вредности на концентрацијата во $\mathrm{mg} / 100 \mathrm{~g}$ свеж плол)
Tab. 2. - Concentration of some macro and micro elements in some cultivars of pears (Average concentration $\mathrm{mg} / 100 \mathrm{~g}$ fresh fruit)

Елемент Element	Боскова Bosc	Клержо Clairgeau	Кантарка Cure	Красанка Passe Crassone	CV
Na	6.89	6.97	5.04	5.21	17.33
K	102.35	101.82	115.59	104.24	6.11
Ca	18.24	8.85	6.99	13.07	42.39
Mg	7.39	4.19	4.18	7.01	30.71
Fe	0.21	0.15	0.25	0.19	20.80
Cu	0.23	0.15	0.11	0.14	32.02
Zn	0.15	0.15	0.16	0.17	5.98
Mn	0.08	0.04	0.03	0.08	43.83

Манганот е со најмала застапеност од испитуваните микроелементи. Неговата содржина се движи од $0,03 \mathrm{mg} \%$ кај сортата Кантарка до $0,08 \mathrm{mg} \%$ кај сортите Боскова и Красанка. Интересно е да се истакне дека испитуваните сорти најмногу се разликуваат по содржина на манган, што се потврдува и со утврдениот коефициент на варијација. $(43,83 \%)$.

Велков и сор. (1970) и Илиев и сор. (1976) наведуваат дека просечната содржина на бакар во круши изнесува $0,22 \mathrm{mg} \%$, железо $0,55 \mathrm{mg} \%$ а на нинк $0,16 \mathrm{mg} \%$. Крушите спаѓаат во ретките овошни плодови кои солржат јод (0,02 mg во kg), кој е неопхолен за функција на тироидната жлезла. Покровский (1976) и Нестерин и сор. (1979) изнесуваат дека просечната содржина на железото изнесува $0,23 \mathrm{mg} \%$, бакарот $0,12 \mathrm{mg} \%$, цинкот $0,19 \mathrm{mg} \%$ и манганот $0,065 \mathrm{mg} \%$. Од изнесените резултати на Ljubisavljević (1965) може да се констатира дека содржината на железо изнесува $0,40 \mathrm{mg} \%$, цинк $0,16 \mathrm{mg} \%$, бакар $0,10 \mathrm{mg} \%$ и манган $0,06 \mathrm{mg} \%$.

Разликите во солржината на микроелементите помеѓу презентираните резултати од поодлелните автори се различни, што секако е резултат на разликите во испитуваните сорти и условите на одгледување.

Ако вкупната содржина на испитуваните микроелемеити се земе за индекс 100 , тогаш просечната застапеност на поодлелните елементи е како што следува: железото е застапено со $34,48 \%$, бакарот и нинкот со $27,59 \%$ и манганот со $10,34 \%$.

Во табелата 3 е направена споредба на средната вредност на секој елемент, со содржината на истите елементи во јаболкото како водечко овошје кај нас (Smock и cop. 1950). Од изнесените резултати може да се констатира дека содржината на сите испитувани микро и макроелементи се доста блиски и постои висок степен на корелација.

Таб. 3. - Споредба на содржината на некои макро.и микроелементи во јаболка и круши ($\mathrm{mg} / 100 \mathrm{~g}$ свеж плод)
Table. 3. - Comparison of the amount of some macro and micro elements in apples and pears ($\mathrm{mg} / 100 \mathrm{~g}$ fresh fruit)

Eлемент Element	Јаболка Apples	Круини* Pears*
K	116.0	1.06
Ca	7.0	
Mg	6.0	11.79
Na	10.0	5.69
Fe	0.3	6.05
Cu	0.071	0.2
Zn	0.15	0.16
Mn	0.084	0.16

ЗАКЛУЧОК

Врз основа на испитувањата за минсралниот состав на некои сорти крупи, може да се заклучи следново:

Содржината на калиумот се движи од $101,82 \mathrm{mg} \%$ кај сортата Клержо до 115,59 кај Кантарка. Од испитуваните макроелементи во крупите калиумот е најмногу застапен ($81,85 \%$).

Содржината на железо кај поодделните сорти се движи од $0,15 \mathrm{mg} \%$ кај Клержо до $0,25 \mathrm{mg} \%$ кај Кантарка. Неговата застаненост ол исиитуваните микроелементи е најголема и изнесува $34,48 \%$.

Најголема варијација помеѓу испитуваните сорти се утврдени во содржината на манган ($\mathrm{CV}=43,83 \%$).

Содржината на макро и микроелементите во круните и јаболката е со висок степен на корелација.

ЛИТЕРАТУРА

1. Велков В. и сор. 1970. Агробиологична и хемиско-технологична карактеристика на овошните сортове. Пловдив.
2. Christian G. D., Feldman F. J. 1970. AAS Aplication in Agriculture. Biology and Medi cine, Wiley-Interscience, New York, London, Sydney.
3. Erdeljan V. 1962. Primenjena opsta statistika, Zemun.
4. Илиев И., Миланов Б., Панов В., Странжев А. 1976. Крупа. Пловлив.
5. Joslyn M. A., 1970. Methods in Foods and Food Analysis. Academic press, New York and London.
6. Ljubisavljević M. 1965. Voće. povrće, pečurke i prerađevine. Beograd.
7. Metz W., Reinhald J. G., 1975, Trace elements in clinical chemistry, Slin. Chem. 21.
8. Нестерин М. Ф., Скурихин И. М. 1979. Химический состав пишевых продуктов. Москва
9. Niketić-Aleksić G., Bukvić B., Vereš M. Jakovljević M. 1976. Sadržaj nekih makro i mikrolemenata u sokovima voća i povrća. Hrana i ishrana, 5-6. Beograd.
10. Покровский А. А. 1976. Химический состав пишевых продуктов. Москва
11. Smock R. M., Neuber A. M., 1950. Apples and Apple Products, Interscience Publish ers, Inc. New York.
12. СтранджевА.. Ленартович В. 1972. Определение с七ьржанието на К. Са и Р в плодовите на някои сортове ябълки и круши. София.

[^0]: * Д-р Лазар Сиваков, вонр. проф.. Земјоделски факултет. 91000 Скопје

 Мирјана Богданова, стручен соработник, Институт за клиничка биохемија. Медицински факултет, 91000 Скопје.

 Д-р Богдан Богланов, проф.. Институт за хемија, ПМФФ, 91000 Скопје.
 *Dr Lazar Sivakov, Assoc. Prof., Faculty of Agriculture, 91000 Skopje.
 Mirjana Bogdanova, Research ass., Institute of Clinical biochemistry, Faculty of Medicine, 91000 Skopje.

 Dr Bogdan Bogdanov, Prof., Institute of Chemistry, Faculty of science and mathematics, 91000 Skopje

