UDK 634.6:543.42:543.7

Оригинален научен труд Original research paper

ОПРЕДЕЛУВАЊЕ НА НЕКОИ МАКРО И МИКРОЕЛЕМЕНТИ ВО ПЛОДОВИТЕ ОД ПОВАЖНИТЕ СОРТИ АКТИНИДИИ СО АТОМСКА АПСОРПЦИОНА СПЕКТРОФОТОМЕТРИЈА

Л. Сиваков, Мирјана Богданова, Б. Богданов*

КРАТОК И ИЗВАДОК

Со помош на атомска апсорпциона спектрофотометрија вршевме определување на натриум, калиум, калциум, магнезиум, железо, бакар, цинк и манган во плодови од поважните сорти актинидии (Хејворт, Абот, Бруно, Монти и Фемеле). Плодовите потекнуваат од плантажните насади на АК "Тиквеш" - Кавадарци.

Констатирано е дека најмногу застапен елемент е калиумот со 77,23% од вкупно испитуваните минерални материи, а најголеми варијации помеѓу сортите е во содржината на манган.

OF SOME MACRO AND MICRO ELEMENTS IN THE FRUIT OF MORE IMPORTANT CULTIVARS OF KIWIFRUIT

L. Sivakov, Mirjana Bogdanova, B. Bogdanov

SUMMARY

Concentration of the elements Na, K, Ca, Mg, Fe, Cu, Zn and Mn were measured in the fruit of more important cultivars of kiwifruit (Actinidia chinensis

^{*}Д-р Лазар Сиваков, вонр. проф., Земјоделски факултет, 91000 Скопје Мирјана Богданова, стручен соработник, Институт за клиничка биохемија. Медицински факултет, 91000 Скопје

Д-р Богдан Богданов, доцент, Институт за хемија, ПМФ, 91000 Скопје

Dr Lazar Sivakov, Assoc. Prof., Faculty of Agriculture, 91000 Skopje

Mirjana Bogdanova, Research ass., Institute of Clinical biochemistry, Faculty of Medicine, 91000 Skopje

Dr Bogdan Bogdanov, Ass. Prof., Institute of Chemistry, Faculty of Science, 91000 Skopje

Planch.) (Hayward, Abbott, Bruno, Monty and Femmelle) by means of flame atomic absorption spectrophotometry. The fruits were taken from the plantation of AK "Tikveš" - Kavadarci.

The results showed that the most present element among all examined mineral matters was K (77,23%), but Mn revealed the greatest variation releted to the different kiwifruit cultivars.

ВОВЕД

Актинидијата (Actinidia chinensis Planch) е континентална овошна култура, со потекло од Кина. Интересот за ширење на оваа култура во однос на другите овошни култури е нивниот специфичен вкус и зголемена содржина на витамин С и В (Duennkeberk и сор., 1979, Spirovska и сор. 1986). Поради тоа, Институтот за овоштарство интродуцирал некои поважни сорти од актинидии (Хејворт, Абот, Бруно, Монти и Фемеле) на плантажните насади од АК "Тиквеш" - Кавадарци.

Плодовите од испитуваните сорти се со јајцест облик, долги од 5 до 8 сm, широки од 3 до 5 cm, а маса од 20 до 80 g. Епидермисот е кафеаво обоен, а понекогаш зеленикаво, покриен со кратки фини влакненца. Месото е зеленикаво, содржи многу ситни семки, црни или кафеаво обоени. Испитуваните сорти имаат слатко накисел освежителен вкус, со пријатна арома.

Плодовите се берат во октомври, а можат да се чуваат во ладилник во текот на зимата и во рана пролет.

За минералниот состав на актинидијата, во литературата нема многу податоци (Rondain и cop. 1945, Mertz и cop. 1975). Имајќи го предвид значењето на макро и микро елементите во исхраната на човекот, целта беше да извршиме испитување на нивната содржина во некои поважни сорти актинидија.

МАТЕРИЈАЛ И МЕТОД НА РАБОТА

Институтот за овоштарство во Скопје подигна колекционен насад од некои поважни сорти актинидија на плантажните насади од АК "Тиквеш" - Кавадарци. Застапени се сортите: Хејворт, Абот, Бруно, Монти и Фемеле.

Плодовите се анализирани во консумативна зрелост. Подготвувањето на пробата е вршено по аналитички стандарди Joslin, 1970).

Плодовите за анализа најнапред се лупат, се мелат и се хомогенизираат. Од хомогенизираната маса за секоја сорта се мери по три паралелени проби од околу 7 g. Пробата се става во стандардизирано порцеланско лонче, се суши претходно во сушница, а потоа се става во муфолна печка постепено покачувајќи ја температурата до 550°С и на оваа

температура се држи 16 часа т.е. додека примерот не стане бел. Сувиот остаток се раствора во 0,1 М раствор од хлороводородна киселина и се префрлува во одмерна тиквица од 25 ста и се дополнува со истата киселина. При мерењето на одделните елементи се врши разредување на пробата 1:50 со 0,23% стронциум хлорид за да се отстрани влијанието на фосфатите (Christian и сор., 1970). На ист начин се разредува и стандардниот раствор и контролната проба. Определувањето се врши со атомско апсорпционен спектофотометар ОРТОN FMD-3. Податоците и параметрите што беа користени при мерењата се дадени во таб. 1.

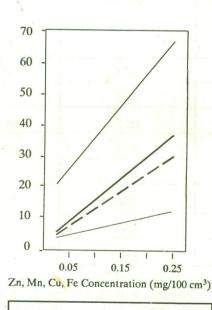
Сите стандардни раствори се приготвени од аналитички чисти реагенси. Стандардните раствори за магнезиум, железо, цинк и бакар се приготвени од соодветни метали растворени во хлороводородна киселина, додека растворите за натриум, калиум, калциум и манган се приготвени од соодветни суви карбонати. Основните стандарди се со концентрација 1 g/dm³. Се приготвува заеднички стандарден раствор со разредување и тој содржи Nа 4,6х10-3 g/100 cm³, К 64,2х10-3 g/100 cm³, Са, Mg 10х10-3 g/cm³, Fe 0,2х10-3 g/100 cm³, Сu, Zn 0,1х10-3 g/100 cm³, Mn 0,05х10-3 g/100 cm³.

Table 1. - Некои параметри употребувани при мерењата
Table 1. - Instrument Description and Parameters

Елемент Element	Spectral Lines used for Analisis	Spectral Band Pass .	Lamp Curent mA	
	nm	nm		
Na	589,6	0,4	10	
K	766,5	0,5	10	
Ca	422,7	0,4	20	
Mg	285,2	0,8	20	
Fe	248,3	0,2	20	
Cu	324,8	0,1	15	
Zn	213,9	0,3	15	
Mn	279,5	0,2	7	

Количествата на елементите во стандардните раствори се приближни за секој елемент со количествата што се содржат во пробите од актинидија. Содржината на железо, бакар, цинк и манган е многу помала од содржината на натриум, калиум, калциум и магнезиум. Во плодовите од актинидијата вр-

шевме испитување на линеарноста помеѓу релативниот интензитет на сигналот и концентрацијата на железо, бакар, цинк и манган во заеднички стандарден раствор во присуство на константна концентрација од Na $4,6x10^{-3}$ g/ 100 cm^3 , K $64,2x10^{-3}$ g/ 100 cm^3 , Ca, Mg $10x10^{-3}$ g/ 100 cm^3 (граф. 1).


Во граф. 2 и 3 е прикажана зависноста помеѓу релативниот интензитет на сигналот и концентрацијата на натриум, калциум и магнезиум, како и на калиум во заеднички стандарден раствор. Од графиконите може да се констатира дека постои линеарна зависност помеѓу интензитетот на сигналот и дадената концентрација на испитуваните елементи.

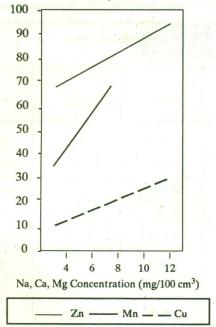
Добиените резултати за содржината на поодделните елементи се обработени варијационо статистички (Erdeljan, 1962).

РЕЗУЛТАТИ И ДИСКУСИЈА

Резултатите од испитувањата за минералниот состав од поважните сорти актинидии се дадени во таб. 2. Од табелата може да се констатира дека содржината на поодделните елементи е различна. Најмногу застапен елемент е калиумот и неговата содржина се движи од 272,12 mg% кај сортата Монти до 295,72 mg% кај сортата Абот или просек за сите испитувани сорти

- Сл. 1. Аналитичка крива за Zn, Mn, Cu, Fe во матичен раствор кој содржи константна концентрација Na, K, Ca, Mg во 0,1М НСI (види во текстот)
- Fig. 1. Analitical curve for Zn, Mn, Cu and Fe in matrix solution containing constant Na, K, Ca and Mg concentration in 0,1M HCl (see text)

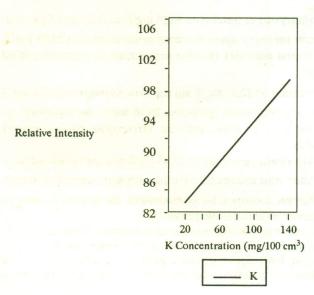
Mn ·


Fe

Zn

Relative Intensity

Сл. 2. - Аналитичка крива за Na, Ca, Mg во матичен раствор -0,1M HCl


Fig. 2 - Analitical curve for Na, Ca, Mg, in matrix solution -0,1M HCl

Сл. 3. - Аналитичка крива за К во матичен раствор -0,1М НСІ

Fig. 3. - Analitical curve for K in matrix solution -0,1M HCl

Relative Intensity

Таб. 2. - Содржина на макро и микро елементи во некои сорти актинидија (средни вредности на концетрацијата во Mg/100 g свеж и излупен плод)

Tab. 2	Concentration of some macro and mikro elements in some cultivars of Kiwifruit (Average
	concentration Mg/100 g fresh and piled fruit).

Element	Hayward	Abbott	Bruno	Monty	Femelle
Na	12,8349	18,4643	13,1721	11,4501	12,1655
K	272,8551	295,7202	290,7557	272,1178	275,5012
Ca	31,6838	34,7703	30,2558	42,8463	55,7130
Mg	22,5516	23,5689	30,4701	29,0293	39,1948
Fe	0,5222	0,5243	0,5713	0,5730	0,6625
Cu	0,2687	0,3141	0,2112	0,2645	0,3253
Zn	0,2370	0,1923	0,2242	0,3568	0,2207
Mn	0,1365	0,1501	0,0835	0,0669	0,1093

изнесува 281,39 mg%. Испитуваните сорти помеѓу себе не се разликуваат по содржината на калиум, што се потврдува со коефициентот на варијација кој изнесува 3,92%.

Содржината на калциумот се движи од 30,26 mg% кај сортата Бруно до 55,71 mg% кај Фемеле или нивната просечна содржина изнесува 39,05 mg%. Помеѓу испитуваните сорти постојат големи варијации во содржината на калциум (KV = 26,92%).

Магнезиумот е застапен од 22,55 mg% кај сортата Хејворт до 39,19 mg% кај Фемеле или просечната содржина изнесува 28,96 mg%. Варијациите во содржината на магнезиум се големи, што се потврдува со добиениот коефициент на варијација (22,98%).

Содржината на натриумот се движи од 11,45 mg% кај сортата Монти до 18,46 mg% кај сортата Абот или просек за сите испитувани сорти изнесува 13,62 mg%. Постојат големи разлики во содржината на натриум, што се потврдува со коефициентот на варијација (20,46%).

Ако се изврши квантитативна анализа на застапеноста на поодделните макро минерални материи, ќе се констатира дека испитуваните сорти содржат најмногу калиум. Кога би се индексирала вкупната содржина на испитуваните макроелементи со 100, тогаш просечната застапеност на поод-

делните минерални материи е како што следува: калиумот е застапен со 77,51%, калциумот со 10,76%, магнезиумот со 7,98% и натриумот со 3,75%.

Од испитувањата извршени за микроелементите, може да се констатира дека содржината на железо се движи од 0,522 mg% кај Хејворд до 0,663 mg% кај Фемеле или просечно 0,522 mg%. Разликите во содржината на железо помеѓу испитуваните сорти се мали, што се потврдува и со коефициентот на варијација (10,00%).

Содржината на бакарот се движи од 0,211 mg% кај сортата Бруно до 0,325 mg% кај Фемеле или просечно 0,277 mg%. Помеѓу испитуваните сорти се констатирани разлики, што се потврдува со коефициентот на варијација (16, 79%).

Содржината на цинкот во испитуваните сорти се движи од 0,192 mg% кај сортата Абот до 0,357 mg% кај Монти или просечно 0,246 mg%. Постојат разлики помеѓу испитуваните сорти по однос на содржината на цинк, што се потврдува статистички со утврдениот коефициент на варијации (26,40%).

Манганот е со најмала застапеност од испитуваните микроелементи. Неговата содржина се движи од 0,067 mg% кај Монти до 0,150 mg% кај Абот или просечната содржина изнесува 0,109 mg%. Интересно е да се истакие дека испитуваните сорти најмногу се разликуваат по содржина на манган, што се потврдува и со утврдениот коефициент на варијација (31,82%).

Ако вкупната содржина на испитуваните микроелементи се земе за индекс 100, тогаш просечната застапеност на поодделните елементи е како што следува: железото е застапено со 47,11%, бакарот со 23,14%, цинкот со 20,66% и манганот со 9,09%

Содржината на макро и микроелементите кај поодделни сорти актинидии варира, што зависи од сортата и условите на одгледување (Rondain и сор., 1945, Mertz и сор., 1975), што го покажуваат и изнесените резултати.

Во таб. З е направена споредба на средната вредност од секој елемент, со содржината на истите елементи во јаболкото како водечко овошје кај нас (Smock и сор., 1950). Од изнесените резултати може да се констатира дека содржината на сите испитувани елементи во актинидијата се поголеми во споредба со јаболкото, особено разликата е значајна во содржината на калиум, калциум, магнезиум и бакар. Според извршената анализа, може да се заклучи дека со вклучување на актинидијата во исхраната, се овозможува покрај внесување на витаминот С и В (Spirovska и сор., 1986, Duennkeberk и сор., 1979) и се подобрува минералниот состав на храната.

Таб. 3. - Споредба на содржината на некои макро и микро елементи во јаболка актинидија (mg/100 g свеж плод)

Tab. 3. - Comparison of the amount of some macro and micro element in apples and Kiwifruit (mg/100 g fresh fruit)

Елемент Element	Jаболка Apples	Актинидија* Kiwifruit*
K	116,0	281,390
Ca	7,0	39,054
Mg	6,0	28,963
Na	10,0	13,617
Fe	0,3	0,571
Cu	0,071	0,277
Zn	0,15	0,246
Mn	0,084	0,109

^{*}средни вредности од петте сорти актинидија

ЗАКЛУЧОК

Врз основа на испитувањата за минералниот состав на некои актинидии, може да се заклучи следново:

Содржината на калиумот се движи од 272,12 mg% кај сортата Монти до 295,72 mg% кај Абот. Одиспитуваните макроелементи калиумот е застапен со 77, 51%.

Содржината на железо кај поодделните сорти се движи од 0,522 mg% кај Хејворд до 0,663 mg% кај Фемеле или неговата застапеност од испитуваните микроелементи изнесува 47,11%.

Најголеми варијации помеѓу испитуваните сорти се утврдени во содржината на манган (KV = 31,82%).

Актинидијата во споредба со јаболкото се одликува со поголема застапеност на поодделни елементи, особено со калиум, калциум, магнезиум и бакар.

ЛИТЕРАТУРА

 Christian G. D., Feldman F. J. 1970. AAS Aplications in Agriculture, Biology and Medicine, Wiley-Interscience, New York, London, Sidney.

^{*}average concentration of the five cultivars of Kiwifruit

- Duennkeberk G., Kopp P. M., Blumental A. 1979. Content of vitamin B₁, vitamin C and niacin in fresh exotic fruit, Mitt. Lebensmittelunters. Hyg. 70.
- 3. Erdeljan V. 1962. Primenjena opšta statistika. Zemun.
- Ferguson I. B. 1980. Muvment of mineral nutrients into the developing fruit of the Kiwifruit (Actinidia Chinensis Planch), N. Z. J. Agric. Res. 23.
- 5. Joslyn M. A. 1970. Methods in Foods in Food Analysis, Academic Press, New York and London.
- 6. Mertz W., Reinhald J G. 1975. Trace elements in clinical chemistry, Clin. Chem. 21.
- 7. Spirovska Radmila, Sivakov L., Georgiev D. 1986. Biološko-proizvodne osobine aktinidije gajene na području Kavadara. Jug. voć. 77-78, Čačak.
- 8. Smock R. M., Neuber A. M. 1950. Apples and Apple Products, Interscience Publishers, Inc. New York.
- Rondain L., Boisselot. J. 1945. Energy, mineral and vitamin value of the edible fruit of Actinidia Chinensis Planch. Bull. Sci. Hyg. aliment, 33.