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“Wanted, new concepts”
C.A. Coulson (1960)"

Abstract

A novel approach to the Wiener number is described. Ii is based on the distance
matrix in which topographic (geometric) distances rather than topological (graph-
theoretical) distances are the input entries. The Wiener niumber defined in this
novel way is thus the representative of 3D (topographic) molecular descriptors.
This novel Wiener number is tested in quantitative structure-property relationships
(QSPR) with enthalpy functions of the lower alkanes. Its performance is compared
to that of the traditional 2D Wiener number. The statistical analysis favours the
QSPR models with the 3D Wiener numbers over the related QSPR models with the
2D Wiener numbers. Among the considered models with the 3D Wiener numbers,
the best agreement with experimental enthalpy functions is obtained with the
logarithmic QSPR model.

1. Introduction

In recent years, there has been considerable interest in the Wiener number (the
Wiener index) and its uses in quantitative structure-property relationships (QSPR) and in
quantitative structure-activity relationships (QSAR) [1—4] . The Wiener number W was
introduced in 1947 by Wiener as the path number [15]. The path number was defined
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as the number of bonds between all pairs of atoms in an acyclic molecule. Wiener
also introduced the polarity number of an acyclic structure, which is equal to the
number of pairs of atoms separated by three bonds. By using a linear combination
of the path number and the polarity number, Wiener was able to obtain a fair prediction
of alkane boiling points. In subsequent studies [16 —19], Wiener extended the applica-
tion of path number and polarity number to other physical properties of alkanes
such as heats of formation, heats of vaporization, molar volumes and molar refractions.
In view of the pioneering contribution of Wiener in recognizing the significance of
the number of paths in a molecular skeleton, the term ‘the Wiener number’ (e.g. [20])
or ‘the Wiener index’ (e.g. [21]) has been adopted for the number of distances in all
chemical structures. We should note here that the one-to-one correspondence between
the (graph-theoretical) distance and the path number holds only for acyclic systems.
Since the graph-theoretical distance is defined [1—4] as the smallest number of
bonds, i.e. the shortest path between the pair of atoms in a structure, the distance and
the smallest path number between atoms coincide in cyclic structures.

The Wiener number measures the compactness of a molecule [22]. Note
that the smaller the Wiener number, the larger the compactness of the molecule.
Hence, it can reliably be used for correlations with those physical and chemical
properties which depend on the ratio of the volume to the surface of the molecule.
Chromatographic retention data for a homologous series of hydrocarbons are typical
molecular properties for which QSPR models with the Wiener number should lead to
trustworthy predictions [2,23,24]. Extensive bibliographies on the use of the Wiener
number in QSPR and QSAR can be found in several reviews [1,3,4,20—-22,25-29].

Graph-theoretical language will be used in this note because the same was
employed in most of the fundamental work on the Wiener number (e.g. [1,13,20,30]).
We give the graph-theoretical definition of the 2D Wiener number in section 2. The
topographic definition of the 3D Wiener number will be presented in section 3.
Section 4 contains a selected example of application of the 3D Wiener number to
QSPR, and section 5 contains concluding remarks.

2. The 2D Wiener number

In the original work by Wiener, the Wiener number was not, strictly speaking,
formulated in graph-theoretical terms. It was defined within the framework of chemical
graph theory later (in 1971) by Hosoya [30], who pointed out that the Wiener
number can be obtained from the distance matrix [20,31—-34] for the structure
(graph) in question.

The Wiener number may be defined for an arbitrary connected graph (structure)
G in the following way. Let us assume that G has vertices 1,2,..., N. For each pair
k, I of vertices, let (D),; denote the distance in G between k and /; i.e. the length
of the shortest path between k and /. The distances (D), represent the elements of
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the distance matrix D = D(G) of the graph G. The Wiener number W = W(G) of G
is therefore given by [30] :

W=

M=
M=

N
2 Dy - (1)
1 I=1

k
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x 1
z (Q)klz_z'
1 I=1 k

In other words, the Wiener number W of G is equal to the half-sum of the elements
of D. Since the distance matrix in the above formulation contains information only
about the 2D structure of a molecule, we named the corresponding number repre-
senting the sum of all graph-theoretical distances in G the 2D Wiener number. We
denote it by 2PW. In fig. 1, we give as an example the distance matrix and the 2D
Wiener number for the graph corresponding to the carbon skeleton of 2,4-dimethyl-
hexane.
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Fig. 1. The graph-theoretical distance matrix and
the Wiener number of a 2,4-dimethylhexane tree.

In the literature, there are many algorithms available for computing the distance
matrix and consequently the 2D Wiener number for any structure [9,13,35,36].
Some of these algorithms are even applicable to more complicated problems, where
vertices and edges are allowed to carry weights (e.g. [9,13,37]). .

The 2D Wiener number has interesting properties [1,3,4,13,14,20,21,
26—29,32]. Since at a constant number of atoms the Wiener number has a maximum
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Fig. 2. Ordering of trees with seven vertices accord-
ing to their 2D Wiener numbers (in parentheses).

for the linear n-alkane and a minimum for the most compact (most branched and
cyclic structures [22]), it appears to be a convenient measure of molecular branching
and cyclicity [38—46]. As an example, in fig. 2 we give Wiener numbers for all trees
with seven vertices.

The Wiener number ordered trees with seven vertices according to the increased
mode of branching. The linear structure, a seven-membered chain, has the largest
value of the Wiener number, while the six-point star structure has the smallest. All
other branched structures lie in between these two extremes. Since the 2D Wiener
number is not a very discriminative quantity, two pairs of trees with seven vertices
have degenerate values of W.
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3. The 3D Wiener number

The distance matrix of a structure may also be based on the topographic
(geometric) distances, i.e. the matrix elements (D), represent “true” spatial distances
between atoms k and / in a molecule expressed in some units of length [2,3,47].
This topographic (geometric) distance matrix contains information on the 3D structure
of a molecule. The corresponding Wiener number is termed the 3d Wiener number,
and it is representative of topographic invariants [48,49]. We denote it by 3w In
fig. 3, we give the topographic distance matrix (denoted by 3D1_)) and the related
3D Wiener number for 2,4-dimethylhexane. Only the carbon skeleton of 2,4-dimethyl-
hexane is considered.

=Y il

0 154 255 393 511 638 255 442
0 1354 255 392 511 154 298
0 154 255 393 255 255

3Dy, - 0 154 255 298 154

= 0 154 442 255

0 530 298

0 343

- 0_|
3Dy - 86.08

Fig. 3. The topographic distance matrix (only upper triangle
is given) and the related 3D Wiener number for the carbon
skeleton of 2,4-dimethylhexane.

The optimal spatial geometry of 2,4-dimethylhexane was constructed by
using for CC bond lengths uniformly the value of 1.54 A, for the bond angles between
CC bonds in the chain the value of 112°, the two methyl groups are taken to be in
“anti” position to each other and both to be out on opposite sides of the plane in
which lies the six-membered chain for 56° each. We considered this idealized “frozen”
geometry because we could not find an experimentally determined structure of
2,4-dimethylhexane in the literature. We will construct, in the same way, structures
of other alkanes that will be considered in this work.
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The 3D Wiener number appears to be more discriminative than the 2D Wiener
number. For example, the degeneracy of two pairs of trees with seven vertices that
have the same 2D Wiener numbers is resolved when the 3D Wiener numbers are used:

Tree Dy 3Dy
v 438 58.19
\Y 48 5661
V1 46 57.14
VII 46 57.02

4. Application

We used both 2PW and 3PW numbers to set up, as an example of their applica-
tion, QSPR models for predicting enthalpy functions (H° — Hg)/T (in cal K™! mol™!)*
of lower alkanes. The enthalpy functions and Wiener numbers for the first 21 alkanes
(except methane) are given in table 1.

We examined three types of correlations between enthalpy functions EF and
Wiener numbers W of alkanes:

(i)  linear least-squares fit
EF=aW+b, 2
(ii) quadratic least-squares fit
EF=aW? +bW+c, 3)
(i) logarithmic least-squares fit
InEF=Ina+blnW. 4)
The statistical characteristics of the above correlations are given in tables 2, 3 and 4.
The calculated enthalpy functions by the six models from the above are given in
table 5. The agreement between the experimental enthalpy functions (EF)ex, and

calculated enthalpy functions (EF)cye is analyzed via the linear correlation for each
model considered:

*Calories may be converted to SI units (joules) by use of the relation: 1 cal/mol = 4.184 J/mol.
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Table 1

The enthalpy functions (H® —HJ)/T (in cal K™! mol™!) and Wiener numbers 2Dy and 3Pw tor
the first 21 alkanes (methane is not included)

Alkane ®H-HDT WmE -7 Pw m®Pw Py nPw
1 Ethane 95 22513 1 0.0000 154 04318
2  Propane 11.8 24681 4 1.3863 563 1.7281
3 Isobutane 144 2.6672 9 21972 1216 2.4982
4 n-butane 158 2.7600 10 23026 13.65 26137
5 2,2-dimethylpropane 185 29178 16 27726 2125 3.0564
6 2-methylbutane 176 2.8679 18 28904 2317 3.1429
7 n-pentane 193 2.9601 20 29957 26.78 3.2877
8 2,2-dimethylbutane 201 3.0007 28 3.3322 3523 35619
9 2,3-dimethylbutane 19.6 29755 29 33673 3653 35981
10 2-methylpentane 211 3.0493 32 34657 4068 3.7057
11 3-methylpentane 208 3.0350 31 34340 3927 3.6705
12 n-hexane 230 3.1355 35 35553 4635 3.8362
13 2,2 3-trimethylpentane 224 3.1091 42 3.7377 5148 39412
14 2,2-dimethylpentane 234 3.1527 46 38286 57.14 4.0455
15 3 ,3-dimethylpentane 232 3.1442 44 3.7842 5432 39949
16 2,4-dimethylpentane 234 3.1527 48 3.8712 58.19 4.0637
17  2,3-dimethylpentane 227 3.1224 46 38286 57.02 4.0434
18 2-methylhexane 247 3.2068 52 39512 65.58 4.1833
19 3-methylhexane 243 3.1905 50 39120 6323 4.1468
20 3-ethylpentane 251 32229 48 38712 56.61 4.0362
21 n-heptane 26.6 3.2809 56 40254 17357 4.2982
(EF)exp =4a (EF)calc tbh. (5)

The statistical parameters for these correlations are given in table 6.

The statistical analysis favours for all three types of investigated correlations
QSPR models with 3D Wiener numbers over the related QSPR models with 2D Wiener
numbers. Among all six models considered, the best agreement with experimental
enthalpy functions is obtained with the logarithmic QSPR model with 3D Wiener
numbers. Thus, it appears that the use of the 3D Wiener number in structure-property
correlations is rather promising. However, much more work is needed before the
range of its usability is determined. Research in this direction is already in érogress.
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Table 4

Statistical characteristics for the logarithmic correlation between the enthalpy functions
and Wiener numbers of lower alkanes

Statistical data

Wiener Inag b r s F-ratio r?
number (adjusted)

Dy, 21709 (£0.0327) 02568 (+0.0099) 0986  0.0442  676.4595 0973
w 20543 (£0.0346) 02717 (+0.0098) 0988  0.0413  775.0237  0.975

Table 5

Calculated enthalpy functions (in cal K™! mol™!) of lower alkanes by six models

Calculated enthalpy function

Alkane

Model 12 Model 2° Model 3¢ Model 44 Model 5© Model 6

1 12 .64 12.47 1095 10.79 2.1709 21716
2 13.39 1331 1225 1220 2.5269 2.5238
3 14 65 14.65 1428 1429 2.7352 2.7330
4 14.90 14.95 14.66 1475 2.7623 2.7644
5 16.41 1651 16.83 1692 2.8830 2.8847
6 16.91 1691 17.49 17.43 2.9132 2.9082
7 17 41 17.64 18.13 18.34 2.9403 2.9475
8 1943 19.38 20.41 20.28 3.0267 3.0220
9 19.68 19.64 20.66 20.55 3.0357 3.0319
10 2043 2049 21.38 21.37 3.0610 3.0611
11 20.18 20.20 21.15 21.10 3.0529 3.0515
12 21.19 21.65 22.04 2237 3.0840 3.0966
13 2295 271 2333 23.15 3.1309 3.1251
14 2395 2387 2392 23.90 3.1542 3.1534
15 2345 2329 23.64 2354 3.1428 3.1397
16 2446 2408 24.17 24.02 31652 3.1584
17 2395 23 84 2392 2388 3.1542 3.1528
18 25 46 25 .60 2459 2476 3.1857 3.1909
19 2496 2511 24 40 2455 3.1756 3.1809
20 24 46 2376 2417 2383 3.1652 3.1509
21 2647 2723 2491 2529 32048 32221

3 pr=0.2515 Pw+12.3839 dgr = -0.0021 Pw)? +0.3584 3Py +10.2459

Yer=02049 30w +12.1574 ®in EF =2.1709 +0.2568 In (*Cw)
¢ gF = -0.0034 (*Pw)? +0.4501 Pw+105082 fin EF=2.0543+0.2717 n Pw)
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Table 6

Statistical parameters for the linear correlation between the experimental
and calculated (by six models) enthalpy functions of lower alkanes

Statistical parameters

Model a b r s F-ratio r?
(adjusted)
1 - 0.0012(£1.3823) 1.0000(x0.0665) 0960 1.2780 225.9089 0918
2 0.0046 (£1.3049) 09998 (x0.0628) 0965 1.2117 253.4422 0.927
3 0.0050 (£1.0134) 0.9998 (x0.0487) 0978 09538 420.7393 0.955
4 0.0010 (£0.9078) 0.9999 (x0.0437) 0982 0.8578 524.6664 0.963
5 0.0000 (x0.1151) 1.0000 (x0.0384) 0986 0.0442 676.9083 0.971
6 0.0002 (£0.1076) 0.9999 (x0.0359) 0988 0.0413 775.2907 0.975

5. Concluding remarks

We introduced a novel molecular descriptor named the 3D Wiener number
which is based on the topographic distance matrix of a molecule. This index captures
the 3D structure of a molecule. However, the structure and the index are not iso-
morphic: the index can be generated from the structure, but the inverse is not possible;
the structure is not reconstructable from the index. This is a common weakness of
all graph-theoretical and topographic indices.

The 3D Wiener number possesses many of the advantageous features of the
related and very much studied descriptor known as the 2D Wiener number, but it
also has its own additional attractive characteristics such as high discriminative power.
Its use in QSPR studies appears to be encouraging, but more work is needed before
the conditions of its applicability can be established.
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