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Abstract 

A novel approach to the Wiener number is described. It is based on the distance 
matrix in which topographic (geometric) distances rather than topological (graph- 
theoretical) distances are the input entries. The Wiener number defined in this 
novel way is thus the representative of 3D (topographic) molecular descriptors. 
This novel Wiener number is tested in quantitative structure-property relationships 
(QSPR) with enthalpy functions of the lower alkanes. Its performance is compared 
to that of the traditional 2D Wiener number. The statistical analysis favours the 
QSPR models with the 3D Wiener numbers over the related QSPR models with the 
2D Wiener numbers. Among the considered models with the 3D Wiener numbers, 
the best agreement with experimental enthalpy functions is obtained with the 
logarithmic QSPR model. 

1. Introduction 

In recent years, there has been considerable interest in the Wiener number (the 
Wiener index) and its uses in quantitative structure-property relationships (QSPR) and in 
quantitative structure-activity relationships (QSAR) [ 1 - 4 ] .  The Wiener number [¢ was 
introduced in 1947 by Wiener as the path number [15]. The path number was defined 
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as the number of bonds between all pairs of atoms in an acyclic molecule. Wiener 
also introduced the polarity number of an acyclic structure, which is equü to the 
number of pairs of atoms separated by three bonds. By using a linear combination 
of the path number and the polarity number, Wiener was able to obtain a fair prediction 
of alkane boiling points. In subsequent studies [ 1 6 - 1 9 ] ,  Wiener extended the applica- 
tion of path number and polafity number to other physical properties of alkanes 
such as heats of formation, heats of vaporization,molar volumes and molar refractions. 
In view of the pioneering contribution of Wiener in recognizing the significance of 
the number of paths in a molecular skeleton, the term 'the Wiener number' (e.g. [20] ) 
or 'the Wiener index' (e.g. [21]) has been adopted for the number of distances in all 
chemical structures. We should note hefe that the one-to-one correspondence between 
the (graph-theoretical) distance and the path number holds only for acyclic systems. 
Since the graph-theoretical distance is defined [1 -4 ]  as the smallest number of 
bonds, i.e. the shortest path between the pair of atoms in a structure, the distance and 
the smallest path number between atoms coincide in cyclic structures. 

The Wiener number measures the compactness of a molecule [22]. Note 
that the smaller the Wiener number, the larger the compactness of the molecule. 
Hence, it can reliably be used for correlations with those physical and chemical 
properties whäch depend on the ratio of the volume to the surface of the molecule. 
Chromatographic retention data for a homologous series of hydrocarbons are typical 
molecular properties for which QSPR models with the Wiener number should lead to 
trustworthy predictions [2,23,24].  Extensive bibliographies on the use of the Wiener 
number in QSPR and QSAR can be found in several reviews [1,3,4, 20 -22 ,  2 5 - 2 9 ] .  

Graph-theoretical language will be used in this note because the same was 
employed in most of the fundamental work on the Wiener number (e.g. [1,13,20, 30] ). 
We give the graph-theoretical definition of the 2D Wiener number in section 2. The 
topographic definition of the 3D Wiener number will be presented in section 3. 
Section 4 contains a selected example of application of the 3D Wiener number to 
QSPR, and section 5 contains concluding remarks. 

2. The  2D Wiener  n u m b e r  

In the original work by Wiener, the Wiener number was not, strictly speaking, 
formulated in graph-theoretical terms. It was defined within the framework ofchemical 
graph theory later (in 1971) by Hosoya [30], who pointed out that the Wiener 
number can be obtained from the distance matrix [20 ,31-34]  for the structure 
(graph) in question. 

The Wiener number may be defined for an arbitrary connected graph (structure) 
G in the following way. Let us assume that G has vertices 1 , 2 , . . , N .  For each pair 
k, l of vertices, let (--/))kl denote the distance in G between k and l; i.e. the length 
of the shortest path between k and l. The distances (--/))kl represent the elements of 
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the distance matrix D = D(G) of the graph G. The Wiener number W = W(G) of G 
is therefore given by [30] • 

N k N N 
1 

[42 = Z Z (O)kl  = -2 Z Z (O)kl  " (1) 
k = l  l = 1  k = l  l=1 

In other words, the Wiener number I t /of  G is equal to the half-sum of the elements 
of _D. Since the distance matrix in the above formulation contains information only 
about the 2D structure of a molecule, we named the corresponding number repre- 
senting the sum of all graph-theoretical distances in G the 2D Wiener number. We 
denote it by 2Dw. In tig. 1, we give as an example the distance matrix and the 2D 
Wiener number for the graph corresponding to the carbon skeleton of 2,4-dimethyl- 
hexane. 

7 8 

1' 3 5 

G 

D = 

~ 1 2 3 4 5 2 4 -  

1 0 1 2 3 4 1 3  

2 1 0 1 2 3 2 2  

3 2 1 0 1 2 3 1  

4 3 2 1 0 1 4 2  

5 4 3 2 1 0 5 3  

2 1 2 3 4 5 0 4  

4 3 2 1 2 3 4 0  
m 

2Dw = 71 

Fig. 1. The graph-theoretical distance matrix and 
the Wiener number of a 2,4-dimethylhexane tree. 

In the literature, there are many algorithms available for computing the distance 
matrix and consequently the 2D Wiener number for any structure [9,13,35,36].  
Some of these algorithms are eren applicable to more complicated problems, where 
vertices and edges are allowed to carry weights (e.g. [9,13,37] ). 

The 2D Wiener number has interesting properties [1 ,3 ,4 ,13 ,14 ,20 ,21 ,  
2 6 - 2 9 , 3 2 ] .  Since at a constant number of atoms the Wiener number has a maximum 
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I (50} 
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II (52) 

IV (L8 
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Vlll (~~) IX (~2) 

Xl (36) 

Fig. 2. Ordering of trees with seven vertices accord- 
ing to their 2D Wiener numbers (in parentheses). 

for the linear n-alkane and a minimum for the most compact (most branched and 
cyclic structures [22] ), it appears to be a convenient measure of molecular branching 
and cyclicity [ 3 8 - 4 6 ] .  As an example, in fig. 2 we give Wiener numbers for all trees 
with seven verticës. 

The Wiener number ordered trees with seven vertices according to the increased 
mode of  branching. The linear structure, a seven-membered chain, has the largest 
value of the Wiener number, while the six-point star structure has the smallest. All 
other branched structures lie in between these two extremes. Since the 2D Wiener 
number is not a very discriminative quantity, two pairs of trees with seven vertices 
have degenerate values of  W. 
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3. The 3D Wiener number 

The dästance matrix of a structure may also be based on the topographic 
(geometric) distances, i.e. the matrix elements (_D)k t represent "true" spatial distances 
between atoms k and l in a molecule expressed in some units of length [2,3,47]. 
This topographic (geometric) distance matrix contains information on the 3D structure 
of a molecule. The corresponding Wiener number is termed the 3d Wiener number, 
and it is representative of topographic invariants [48,49]. We denote it by 3Dw. In 
fig. 3, we give the topographic distance matrix (denoted by 3D_D) and the related 
3D Wiener number for 2,4-dimethylhexane. Only the carbon skeleton of 2,4-dimethyl- 
hexane is considered. 

7 8 

] 3 5 

C - C  : 1.54/~ 
CIC2C 3 : 112 ° 

3DD_- 

m 

0 1.54 2.55 3.93 5.11 

1.54 2.55 3.92 

0 1.54 2.55 

0 1.54 

0 

g 

6.38 235 4.42 

5.11 1.54 2.98 

3.93 2.55 2.55 

2.55 2.98 1.54 

1.54 4.42 2.55 

0 5.30 2.98 

0 3.43 

0 

3Dw = 86.08 

Fig. 3. The topographic distance matrix (only upper triangle 
is given) and the related 3D Wiener number for the carbon 
skeleton of 2,4-dimethylhexane. 

The optimal spatial geometry of 2,4-dimethylhexane was constructed by 
using for CC bond lengths uniformly the value of 1.54 A, for the bond angles between 
CC bonds in the chain the value of 112 ~, the two methyl groups are taken to be in 
"anti" position to each other and both to be out on opposite sides of the plane in 
which lies the six-membered chain for 56 ° each. We considered this idealized "frozen" 
geometry because we could not find an experimentally deterrnined structure of 
2,4-dimethylhexane in the literature. We will construct, in the same way, structures 
of other alkanes that will be considered in this work. 
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The 3D Wiener number appears to be more discriminative than the 2D Wiener 
number. For example, the degeneracy of two pairs of trees with seven vertices that 
have the same 2D Wiener numbers is resolved when the 3D Wiener numbers are used: 

Tree 2D i4 2 3 D [4 } 

IV 48 58.19 
V 48 56.61 
VI 46 57.14 
VII 46 57.02 

4. A p p l i c a t i o n  

We used both ZDw and 3Dw numbers to set up, as an example of their applica- 
tion, QSPR models for predicting enthalpy functions (H ° - H°)[T  (in ca1 K- 1 mol- 1 )* 
of lower alkanes. The enthaIpy functions and Wiener numbers for the first 21 alkanes 
(except methane) are given in table 1. 

We examined three types of correlations between enthalpy functions EF and 
Wiener numbers W of alkanes: 

(i) linear least-squares fit 

EF = aW + b ,  (2) 

(ii) quadratic least-squares fit 

E F = a W  z + b W + c ,  (3) 

(iii) logarithmic least-squares fit 

l n E F  = lna  + b In W. (4) 

The statistical characteristics of the above correlations are given in tables 2, 3 and 4. 
The calculated enthalpy functions by the six models from the  above are given in 
table 5. The agreement between the experimental enthalpy functions (EF)exp and 
calculated enthalpy functions (EF)cal c is analyzed via the linear correlation for each 
model considered: 

*Calories may be converted to SI units (joules) by use of  the relation: 1 cal/mol = 4.184 J /mol .  
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Table 1 

The enthalpy functions (H ° -H°o)/T (in cal K-1 mol-1 ) and Wiener numbers 2Dw and 
the first 21 alkanes (methane is not included) 

3Dw for 

Alkane (H°-H°o)[T ln(H°-Hö)/T 2Dw ln(2Dw) 3Dw ln(3Dw) 

1 Ethane 9.5 2.2513 1 0.0000 1.54 0.4318 
2 Propane 11.8 2.4681 4 1.3863 5.63 1.7281 
3 Isobutane 14.4 2.6672 9 2.1972 12.16 2.4982 
4 n-butane 15.8 2.7600 10 2.3026 13.65 2.6137 
5 2,2-dimethylpropane 18.5 2.9178 16 2.7726 21.25 3.0564 
6 2-methylbutane 17.6 2.8679 18 2.8904 23.17 3.1429 
7 n-pentane 19.3 2.9601 20 2.9957 26.78 3.2877 
8 2,2-dimethylbutane 20.1 3.0007 28 3.3322 35.23 3.5619 
9 2,3-dimethylbutane 19.6 2.9755 29 3.3673 36.53 3.5981 

10 2-methylpentane 21.1 3.0493 32 3.4657 40.68 3.7057 
11 3-methylpentane 20.8 3.0350 31 3.4340 39.27 3.6705 
12 n-hexane 23.0 3.1355 35 3.5553 46.35 3.8362 
13 2,2,3-trimethylpentane 22.4 3.1091 42 3.7377 51.48 3.9412 
14 2,2-dimethylpentane 23.4 3.1527 46 3.8286 57.14 4.0455 
15 3,3-dimethylpentane 23.2 3.1442 44 3.7842 54,32 3.9949 
16 2,4-dimethylpentane 23.4 3.1527 48 3.8712 58.19 4.0637 
17 2,3-dimethylpentane 22.7 3.1224 46 3.8286 57.02 4.0434 
18 2-methylhexane 24.7 3.2068 52 3.9512 65.58 4.1833 
19 3-methylhexane 24.3 3.1905 50 3.9120 63.23 4.1468 
20 3-ethylpentane 25.1 3.2229 48 3.8712 56.61 4.0362 
21 n-heptane 26.6 3.2809 56 4.0254 73.57 4.2982 

(EF)exp = a (EF)cal e + b . (5) 

The statistical parameters for these correlations are given in table 6. 

The statistical analysis favours for all three types o f  investigated correlations 

QSPR models with 3D Wiener numbers over the related QSPR models with 2D Wiener 

numbers. Among all six models considered, the best agreement with experimental  

enthalpy functions is obtained with the logarithmic QSPR model  with 3D Wiener 

numbers.  Thus, it appears that  the use of  the 3D Wiener number  in s t ructure-proper ty  

correlations is rather promising. However,  rauch more work is needed before the 

range of  its usability is determined.  Research in this direction is already in progress. 
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Table 4 

Statistical characteristics for the logarithmic correlation between the enthalpy functions 
and Wiener numbers of lower alkanes 

Statistical data 

Wiener In a b r s F-ratio r 2 
number (adjusted) 

2Dw 2.1709 (-+0.0327) 0.2568 (-+0.0099) 0.986 0.0442 676.4595 0.973 

3Dw 2.0543 (-+0.0346) 0.2717 (-+0.0098) 0.988 0.0413 775.0237 0.975 

Table 5 

Calculated enthalpy functions (in cal K- ~ mol- 1 ) of lower alkanes by six models 

Calculated enthalpy function 
Alkane 

Model 1 a Model 2 b Model 3 c Model 4 d Model 5 e Model 6 f 

1 12.64 12.47 10.95 10.79 2.1709 2.1716 
2 13.39 13.31 12.25 12.20 2.5269 2.5238 
3 14.65 14.65 14.28 14.29 2.7352 2.7330 
4 14.90 14.95 14.66 14.75 2.7623 2.7644 
5 16.41 16.51 16.83 16.92 2.8830 2.8847 
6 16.91 16.91 17.49 17.43 2.9132 2.9082 
7 17.41 17.64 18.13 18.34 2.9403 2.9475 
8 19.43 19.38 20.41 20.28 3.0267 3.0220 
9 19.68 19.64 20.66 20.55 3.0357 3.0319 

10 20,43 20.49 21.38 21.37 3.0610 3.0611 
11 20.18 20.20 21.15 21.10 3.0529 3.0515 
12 21.19 21.65 22.04 22.37 3.0840 3.0966 
13 22.95 22.71 23.33 23.15 3.1309 3.1251 
14 23,95 23,87 23.92 23.90 3.1542 3.1534 
15 23.45 23.29 23.64 23.54 3.1428 3.1397 
16 24.46 24.08 24.17 24.02 3.1652 3.1584 
17 23.95 23,84 23.92 23.88 3.i542 3.1528 
18 25.46 25.60 24.59 24.76 3.1857 3.1909 
19 24,96 25.11 24.40 24.55 3.1756 3.1809 
20 24.46 23.76 24.17 23.83 3.1652 3.1509 
21 26.47 27.23 24.91 25.29 3.2048 3.2221 

a EF = 0.2515 2Dw + 12.3839 

bEF = 0,2049 3Dw + 12.1574 

c E F  = -0.0034 (2Dw)2 + 0.4501 2Dw + 10.5082 

dEF = -0.0021 (3Dw)2 + 0.3584 3Dw + 10.2459 

e In EF = 2.1709 + 0.2568 In (2Dw) 

f in EF = 2.0543 +0.2717 In (3Dw) 
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Table 6 

Statistical parameters for the linear correlation between the experimental 
and calculated (by six models) enthalpy functions of lower alkanes 

Statistical parameters 

Model a b r s F-ratio r 2 
(adjusted) 

1 - 0.0012 (±1.3823) 1.0000 (±0.0665) 0.960 1.2780 225.9089 0.918 
2 0.0046 (±1.3049) 0.9998 (±0.0628) 0.965 1.2117 253.4422 0.927 
3 0.0050 (±1.0134) 0.9998 (±0.0487) 0.978 0.9538 420.7393 0.955 
4 0.0010 (±0.9078) 0.9999 (±0.0437) 0.982 0.8578 524.6664 0.963 
5 0.0000 (±0.1151) 1.0000 (±0.0384) 0.986 0.0442 676.9083 0.971 
6 0.0002 (-+0.1076) 0.9999 (+-0.0359) 0.988 0.0413 775.2907 0.975 

5. Concluding remarks 

We introduced a novel molecular descriptor named the 3D Wiener number 
which is based on the topographic distance matrix of a molecule. This index captures 
the 3D structure of a molecule. However, the structure and the index are not iso- 
morphic: the index can be generated from the stmcture, but the inverse is not possible; 
the structure is not reconstructable from the index. This is a common weakness of 
all graph-theoretical and topographic indices. 

The 3D Wiener number possesses many of the advantageous features of the 
related and very much studied descriptor known as the 2D Wiener number, but it 
also has its own additional attractive characteristics such as high discriminative power. 
Its use in QSPR studies appears to be encouraging, but more work is needed before 
the conditions of its applicabflity can be established. 
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