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Abstract—Geospatial RDF datasets have a tendency to use
latitude and longitude properties to denote the geographic lo-
cation of the entities described within them. On the other hand,
geographic information systems prefer the use of WKT and GML
geometries when working with geospatial data. In this paper, we
present a process of RDF data transformation which produces a
GeoSPARQL-compliant dataset, using an RDF geospatial dataset
with traffic data as a starting point. The traffic is comprised of
vehicle traces, which consist of numerous points with specific
latitude and longitude values. With our transformations, we
enable querying of the dataset with GeoSPARQL extensions,
which can be used to feed a GIS solution.

Index Terms—GeoSPARQL, Geospatial Data, Data Transfor-
mation, GIS, RDF, SPARQL, Linked Data

I. INTRODUCTION

The exploration gain of semantic technology for spatial
data management becomes more and more evident in many
different domains. Specific taxonomies and ontologies have
been used on thematic web portals for representing a variety
of categories with geospatial features. With the increasing
popularity of this technology within the spatial domain, the
need for standardization is growing. Initial efforts include the
Basic Geo Vocabulary1 by the World Wide Web Consortium
(W3C), which provides a namespace for representing latitude,
longitude and other information about geospatial entities using
WGS84 as a standard of the coordinate system. Later achieve-
ments comprise GeoRSS2, GeoOWL3, NeoGeo Geometry
Ontology4, GeoJSON5, GeoRDF6, etc. Finally, GeoSPARQL
has emerged as a promising standard from W3C for geospatial
RDF. It supports both representation and querying of geospa-
tial data on the Semantic Web and defines a new vocabulary.
It suggests a concrete ontology for representing features and
geometries in RDF as Well Known Text (WKT) or Geography

1http://www.w3.org/2003/01/geo/
2http://www.georss.org/
3https://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/W3C

XGR Geo files/geo 2007.owl
4http://geovocab.org/
5http://geojson.org/
6https://www.w3.org/wiki/GeoRDF

Markup Language (GML) literals. GeoSPARQL defines a core
set of classes, properties and data types that can be used
to construct query patterns in an extension of SPARQL. Its
main aim is to ensure a consistent representation of geospatial
semantic data across the Web, thus allowing both vendors and
users to achieve uniform access to geospatial RDF data.

Although the standard is sufficiently mature, now being 7
years old, the data providers are not familiar enough with it, or
more often they take the path of least resistance and publish
their data in their own format or use custom ontologies. In
these scenarios, an additional effort is needed in order to un-
derstand their data, and use it within an application. This way,
cross-domain data mixing and fusion is very complicated and
almost impossible. A better approach is to develop a means
for transforming the dataset in question into a GeoSPARQL-
compliant one, ready for use by a large number of stakeholders
who already have knowledge of the standard. That was the
main goal of our transformations described in this paper.

II. RELATED WORK

Transforming data from one format to the other – whether
related to a simple conversion between different file formats,
or more complicated mappings from relational data to linked
data, or even generation of datasets following different stan-
dards – is a fundamental aspect of most data integration and
data management tasks. It can vary from very simple or very
complex, depending on the required changes to the data and
their model. This is an area that attracts the attention of
many data scientists for very practical reasons. Integrating
data from heterogeneous sources has led to the development
of Extract-Transform-Load (ETL) systems and methodologies,
as a means of addressing modern interoperability challenges.

One group of these are general tools for converting rela-
tional data from traditional DBMSs to the RDF data model,
such as Triplify [1], D2R Server7, or Virtuoso RDFizer Mid-
dleware (Sponger)8. On the other hand, there are libraries

7http://d2rq.org/d2r-server
8http://docs.openlinksw.com/virtuoso/virtuososponger.html



and tools which deal with geospatial data, but without any
RDF support: GDAL/OGR9, which is a translator library for
raster and vector geospatial data formats, GeoKettle10, which
is a spatial ETL tool dedicated to the integration of different
spatial data sources for building and updating geospatial data
warehouses, etc. It is worth to mention geometry2rdf11, as a
library for generating RDF from resources with geometrical
information, but its RDF model is not compliant with the
GeoSPARQL standard.

The largest open geospatial dataset is Linked Geo Data, a
spatial knowledge base which has been derived from Open
Street Map12. The authors of [2] elaborate on how the collab-
oratively collected OSM data can be interactively transformed
and represented adhering to the RDF data model, building
a rich integrated and interlinked geographic dataset for the
Semantic Web. Their approach is to store the mapping infor-
mation in a relational database (PostGIS) together with the
OSM data, and use the SPARQL-to-SQL rewriter Sparqlify13

to generate RDF. The mapping uses the GeoSPARQL vocab-
ulary to represent the data.

TripleGeo [3] is an open-source tool that can produce
geospatial datasets in compliance with GeoSPAQL standard,
based on different inputs. It is an ETL utility that can extract
geospatial features from various sources and transform them
into triples for subsequent loading into RDF stores. Triple-
Geo can directly access both geometric representations and
thematic attributes either from standard geographic formats or
widely used DBMSs. It can also reproject input geometries
on-the-fly into a different coordinate reference system, before
exporting the resulting triples into a variety of notations.

III. TRAFFIC DATASET

As part of our activities in the project “SAGE: Semantic
Geospatial Analytics”14 [4], we use traffic datasets generated
by the synthetic data generator from TomTom [5]. The syn-
thetic data generator can generate RDF datasets containing
synthetic traces of vehicles on public roads, based on a
specialized algorithm which mimics real-world traffic.

The datasets contain Trace entities, representing a one-
day trace of a vehicle on a map, where each Trace consists
of multiple Point entities. Each Point has a latitude, a
longitude, a timestamp and a Speed entity, depicting a
specific position in time and space of the vehicle. The Speed
entity has a velocity value and metric.

The size of the generated dataset can be specified in
advance, by specifying the number of traces we want it to
contain. For the research presented in this manuscript, we
generated a dataset which contains 1,000,000 traces of vehicles
in and around the city of Leipzig, spanning from the beginning
of year 2016 to the end of 2017. These Trace contain a total

9http://www.gdal.org/
10http://www.spatialytics.org/projects/geokettle/
11https://github.com/boricles/geometry2rdf
12https://www.openstreetmap.org/about
13http://aksw.org/Projects/Sparqlify.html
14http://sageproject.eu/

of over 126,000,000 Point entities. In total, the synthetic
RDF dataset contains over 889,000,000 RDF triples.

IV. GEOSPARQL ENHANCEMENTS OF THE DATASET

The synthetic dataset uses a very basic ontology, depicting
the classes and properties mentioned above. The produced
dataset is in RDF, but it is not GeoSPARQL compliant, i.e. it
does not contain Feature and Geometry instances, which
have explicit well-known-text (WKT) geometries [6]. This
means that while the dataset itself is a geospatial dataset, it
cannot be directly used with GeoSPARQL and in applications
which require explicit WKT values for the geospatial entities.

To improve this, and enable application interactions with
the dataset with GeoSPARQL queries, we created general
enhancements for the traffic datasets. With them, we produce
GeoSPARQL-enabled datasets, suitable for the project, its use-
cases and general compliance testing.

The GeoSPARQL enhancements are defined as SPARQL
queries which can be executed over a TomTom synthetic
traffic dataset which is loaded into an RDF triplestore [7].
The enhancements include Trace transformations, Point
transformations, and some additional transformation necessary
for improved use-cases.

A. Trace Transformations

The trace transformations have the purpose of creating a
LineString geometry for each trace in the dataset. Since the
dataset model is specific for the data generator we use to
generate the datasets, we need a custom transformation which
will select the latitude and longitude values of all points which
comprise a given trace, and construct the corresponding WKT
LineString geometry [7]. To achieve this, we use the following
transformations for each trace:

• Each Trace is enhanced to represent a geo:Feature
entity, which has a geo:hasGeometry relation with a
geometry entity specified as a sf:LineString entity;

• The sf:LineString entity has a geo:asWKT rela-
tion to a geo:wktLiteral value, which represents the
entire Trace as a GeoSPARQL LINESTRING.

The SPARQL INSERT query for the trace transformations
adds new triples into the dataset graph, via the snippet below.

Trace Enhancements Snippet

INSERT {
?trace rdf:type geo:Feature .
?trace geo:hasGeometry ?traceGeomID .
?traceGeomID a sf:LineString .
?traceGeomID geo:asWKT ?wkt .

}

Here, geo:Feature and sf:LineString are classes
defined by the GeoSPARQL standard [6]. On the other hand,
?traceGeomID is constructed by a simple string concatena-
tion between the original URI of the trace and a fixed suffix.
The ?wkt value is constructed by reading all points from
the trace in a subquery, ordering them by their timestamp,



constructing a combined string of the latitude and longitude of
each point, and then combining all concatenated latitudes and
longitudes of the ordered points in a format which defines the
complete trace as a LineString. An example WKT LineString
value for a trace is shown below.

WKT LineString Example

LINESTRING(
12.127818 51.284445,
12.124343 51.282212,
12.120798 51.280137,
12.117422 51.277686,
12.114321 51.275172,
12.111059 51.272767,
...
12.174391 51.328762)

B. Point Transformations

Similarly as with traces, we aimed to transform each point
of each trace into a Point geometry [7]. Therefore, for each
point we use the following transformations:

• Each Point is enhanced to represent a geo:Feature
entity, which has a geo:hasGeometry relation with a
geometry entity specified as a sf:Point entity;

• The sf:Point entity has a geo:asWKT relation to a
geo:wktLiteral value, which represents the Point
as a GeoSPARQL POINT.

Similarly as with the traces, the SPARQL INSERT query
for the point transformations also adds new triples into the
dataset graph, via the snippet below.

Point Enhancements Snippet

INSERT {
?point rdf:type geo:Feature .
?point geo:hasGeometry ?pointGeomID .
?pointGeomID a sf:Point .
?pointGeomID geo:asWKT ?wkt .

}

As with the traces, the geo:Feature and sf:Point
classes used in the INSERT clause are classes defined by the
GeoSPARQL standard, while ?pointGeomID is constructed
by a simple string concatenation between the original URI of
the point and a fixed suffix. The ?wkt value is constructed
by reading and concatenating the latitude and longitude values
of the point, in a format which defines a correct Point. An
example WKT Point value is shown below.

WKT Point Example

POINT(12.127818 51.284445)

C. Additional Transformations

Aside from the trace and point transformations, we made
additional transformations which are not directly related to
GeoSPARQL, but enhance the use-cases [7]:

• Adding a numerical ID to each Trace entity, via a new
property: traces:numID;

• Adding an explicit relation between a Trace
and its start and end points, via new
properties: traces:hasStartPoint and
traces:hasEndPoint, respectively;

• Adding an explicit relation between a Trace and its
calculated duration, in seconds, via a new property:
traces:hasDuration.

After running all enhancements over our Leipzig traffic
dataset, we ended up with over 1,532,000,000 RDF triples in
total in the dataset. This dataset is available within a Virtuoso
instance [8], made available as part of the SAGE project.

V. USING THE GEOSPARQL-COMPLIANT DATASET

In order to demonstrate the usability of the resulting
GeoSPARQL-compliant dataset, we present several use-cases
in the form of SPARQL queries, query results and their actual
usage within a geographic information system. For brevity, all
prefix definitions and FROM clauses of the SPARQL queries
have been omitted from the examples, but can be seen in full
detail on the GitHub page of the project [7]. All examples
below use our enhanced synthetic traffic dataset for the city
of Leipzig, described previously.

1) Query 1: Find all vehicle traces started within a specified
time period and select their respective WKT LINESTRING
values, to be drawn on the map. Additionally, select the
duration of each such trace, and calculate the distance between
the starting point and the ending point of the trace.

SPARQL Query 1

SELECT ?wkt ?date ?duration ?distance ?traceID
WHERE {

?trace a traces:Trace ;
geo:hasGeometry ?traceGeom ;
traces:numID ?traceID ;
traces:hasDuration ?duration ;
traces:hasStartPoint ?start ;
traces:hasEndPoint ?end .

?traceGeom geo:asWKT ?wkt .
?start traces:hasTimestamp ?date .

FILTER (?date >=
"2017-05-03T06:00:00Z"ˆˆxsd:dateTime

&& ?date <=
"2017-05-03T23:45:00Z"ˆˆxsd:dateTime)

?start geo:hasGeometry ?startGeom .
?startGeom geo:asWKT ?startWKT .
?end geo:hasGeometry ?endGeom .
?endGeom geo:asWKT ?endWKT .

BIND(geof:distance(?startWKT,
?endWKT,
units:meter) as ?distance)

} ORDER BY ?date

This query returns results for all traces of vehicles which
started their route in the specified time period. A partial result



TABLE I
PARTIAL RESULTS FROM QUERY 1.

Trace as WKT Date and Time Duration (s) Distance (m) Trace ID

LINESTRING(12.353488 51.343931,12.352586 51.343744, ... 2017-05-03T08:37:59Z 1,070 16,581.50 422335
LINESTRING(12.610297 51.441528,12.612627 51.441695, ... 2017-05-03T08:38:11Z 360 1,459.58 952143
LINESTRING(12.491782 51.381629,12.491827 51.381999, ... 2017-05-03T08:38:19Z 1,740 19,425.20 675117
LINESTRING(12.207745 51.407249,12.207753 51.406779, ... 2017-05-03T08:38:21Z 590 7,281.98 350236
LINESTRING(12.489270 51.272567,12.491189 51.275444, ... 2017-05-03T08:38:41Z 1,650 12,941.70 941890
LINESTRING(12.315006 51.328223,12.315075 51.328165, ... 2017-05-03T08:38:43Z 546 4,021.36 955692
LINESTRING(12.409652 51.335220,12.408825 51.335428, ... 2017-05-03T08:38:52Z 1,155 14,875.00 430094
LINESTRING(12.528184 51.267206,12.528220 51.267318, ... 2017-05-03T08:38:57Z 505 1,786.52 771733
LINESTRING(12.362608 51.358667,12.362919 51.359149, ... 2017-05-03T08:38:58Z 480 3,876.72 517663
LINESTRING(12.127818 51.284445,12.124343 51.282212, ... 2017-05-03T08:38:58Z 1,000 5,892.86 957376

Fig. 1. Visual representation of the results of Query 1: mapping them within a GIS solution.

is shown in Table I, and the same traces are depicted on Figure
1 as part of a GIS solution which visualizes one of the selected
WKT traces. The difference in the date-time values between
the table and the figure is due to different time-zones: the
dataset holds the date-time values in GMT time, as they are
originally generated, while the GIS application transforms and
displays them into CET time, for user-experience purposes.
Note that the GIS application sends out an additional SPARQL
query to the dataset to get the speed values of each point of
the selected trace, the result of which is visible in Figure 1 via
the trace coloring. For brevity, this additional query is omitted
from the example.

2) Query 2: Find all vehicle traces which have a given
map region as a destination. The query selects all traces which
satisfy the constraints, gets their WKT LINESTRING values,
their duration and calculates the distance between the starting
point and the ending point of the trace.

SPARQL Query 2

SELECT ?wkt ?date ?duration ?distance ?traceID
WHERE {

?trace a traces:Trace ;
geo:hasGeometry ?traceGeom ;
traces:numID ?traceID ;
traces:hasDuration ?duration ;
traces:hasStartPoint ?start ;
traces:hasEndPoint ?end .

?traceGeom geo:asWKT ?wkt .
?start traces:hasTimestamp ?date ;

geo:hasGeometry ?startGeom .
?startGeom geo:asWKT ?startWKT .
?end geo:hasGeometry ?endGeom .
?endGeom geo:asWKT ?endWKT .

FILTER(geof:sfContains(
bif:ST_GeometryFromText("POLYGON((
12.346821967457 51.34679532759,
12.348366919850 51.34703657322,



TABLE II
PARTIAL RESULTS FROM QUERY 2.

Trace as WKT Date and Time Duration (s) Distance (m) Trace ID

LINESTRING(12.354888 51.349741,12.353951 51.349536, ... 2016-03-06T06:52:34Z 130 651.96 507008
LINESTRING(12.351120 51.345119,12.350997 51.344888, ... 2016-03-06T07:42:50Z 225 8.93 935397
LINESTRING(12.292396 51.413958,12.293035 51.413740, ... 2016-03-06T08:38:42Z 940 8,899.60 100679
LINESTRING(12.354429 51.348359,12.354407 51.348249, ... 2016-03-06T09:09:35Z 278 429.51 970485
LINESTRING(12.358288 51.360596,12.358529 51.360280, ... 2016-03-06T09:30:12Z 240 1,670.04 853118
LINESTRING(12.269029 51.305859,12.268899 51.306153, ... 2016-03-06T12:02:25Z 925 7,440.02 899824
LINESTRING(12.347528 51.370391,12.348132 51.371072, ... 2016-03-06T12:48:52Z 450 2.714.82 85904
LINESTRING(12.338960 51.331886,12.338704 51.331418, ... 2016-03-06T12:49:42Z 240 1,429.53 972873
LINESTRING(12.462456 51.370047,12.462360 51.370006, ... 2016-03-06T13:22:17Z 807 8,120.75 605680
LINESTRING(12.210354 51.399915,12.210412 51.399675, ... 2016-03-06T14:08:47Z 1,065 11,607.40 791482

Fig. 2. Visual representation of the results of Query 2: mapping them within a GIS solution.

12.350898925160 51.34706337821,
12.352486792897 51.34655408069,
12.353817168568 51.34574991518,
12.354503814076 51.34449002752,
...
12.346821967457 51.34679532759))"),

?endWKT))

BIND(geof:distance(?startWKT,
?endWKT,
units:meter) as ?distance)

} ORDER BY ?date

In this example we select all vehicle traces which end on the
parking grounds around the main football stadium in Leipzig.
Part of the results are presented in Table II and on Figure 2,
along with one selected trace which is displayed in full detail.
The map region selected as the destination filter for traces can
be seen in the left part of the figure, as a yellow circle with a

yellow flag in the middle.

It is important to note that both of these examples,
and their SPARQL queries, would not be possible with-
out the introduced transformations of the original dataset.
Namely, the SPARQL functions geof:distance and
geof:sfContains, just like all other GeoSPARQL func-
tions, cannot work with arguments which are not valid WKT
values, such as our LineStrings and Points.

Many other examples and use-cases are made available with
the transformation of the latitude and longitude coordinates
into comprehensive WKT literals, and with the additional
enhancements we did as part of the work presented here. For
instance, some of the other GeoSPARQL function can be used
to find intersections between regions on a map, e.g. a street,
and the entire trace, not just its start and end point. This would
provide a way to select vehicle traces which traverse a specific
location on a map, on a particular day, in a particular time.



The examples shown here have been integrated as features
of the GIS solution presented in Figures 1 and 2, where it
generates and issues GeoSPARQL-extended SPARQL queries
to the dataset. The GeoSPARQL-compliant RDF results are
then used by the application in a convenient manner.

VI. CONCLUSION

The transformation of a simple geospatial RDF dataset
into a GeoSPARQL-compliant dataset brings the data quality
to a significantly high level, where it can be used by GIS
software which does not speak RDF. This is a very important
step for both providers and users of geospatial data as it
allows interoperability between the already existing toolset
for dealing with geospatial data on one hand, and the RDF
dataset providers on the other hand. We demonstrate this by
transforming a synthetic RDF dataset in the traffic domain
into a dataset which can be queried using the GeoSPARQL
extensions of SPARQL, and can be visualized in a GIS
application which draws WKT geometries on a map.
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