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A growing body of literature suggests that heavy tailed distributions represent an ade-
quate model for the observations of log returns of stocks. Motivated by these findings,
here we develop a discrete time framework for pricing of European options. Probability
density functions of log returns for different periods are conveniently taken to be con-
volutions of the Student’s t-distribution with three degrees of freedom. The supports of
these distributions are truncated in order to obtain finite values for the options. Within

this framework, options with different strikes and maturities for one stock rely on a single
parameter – the standard deviation of the Student’s t-distribution for unit period. We
provide a study which shows that the distribution support width has weak influence on
the option prices for certain range of values of the width. It is furthermore shown that
such family of truncated distributions approximately satisfies the no-arbitrage principle
and the put-call parity. The relevance of the pricing procedure is empirically verified by
obtaining remarkably good match of the numerically computed values by our scheme to
real market data.

Keywords: Asset pricing; Option pricing; Heavy-tailed distributions; Truncated distri-
butions.
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1. Introduction

Options are transferable contracts between two parties that have spot prices which

depend on the uncertain future price of the respective underlying asset. Conse-

quently, a mixture of knowledge and intuition is needed in order to reach a good

estimate for the so-called “fair” price. The mainstream tool used for theoretical

calculation of option prices is the famous formula introduced in Black & Scholes

(1973), Merton (1973). It relies on the assumption that the probability distribution

for the log returns of the underlying asset is Gaussian. This distribution features

mathematical convenience but is also omnipresent in nature, technology and soci-

ety and is thus also known as “normal”. For decades the scholars as well as the

practitioners in different fields had little doubt in its relevance. However, one can

find that both individuals within finance academic circles as well as option traders

are familiar with the fact that the Gaussian underestimates the appearance of ex-

treme movements of the stock prices. Details for this observation can be found

for example in Mandelbrot (1963), Fama (1965), Plerou et al. (1999), Amaral et al.

(2000), Haug & Taleb (2011). The more frequent than expected appearance of such

events was even popularized among the general public in Taleb (2007). Moreover,

in Plerou et al. (1999) and Amaral et al. (2000) it was discovered that the tails of

the distributions of returns seem to decay as an inverse of a power law. In order

to overcome such observations, various modifications of the original Black-Scholes-

Merton model have been developed, which can be roughly categorized in three

groups. The followers of the first approach take the Black-Scholes-Merton formula

as a basis and modify it by using other processes for modeling rare events, for ex-

ample see Merton (1976), Madan et al. (1998), Kou (2002), Patel & Mehra (2018).

Alternatively, Cox (1975), Heston (1993) and Hagan et al. (2002), among others,

use stochastic volatility for modeling the time variability of the price fluctuation

intensity. Power-law-tailed distributions of returns are utilized as a starting point in

the last group of models. Examples of such alternatives are given in Matacz (2000),

Borland (2002b), Borland & Bouchaud (2004), Moriconi (2007) and Cassidy et al.

(2010). Another feature that favors the Gaussian distribution over others for being

used as a building block in the modeling of logarithmic returns is that it is stable,

i.e. a linear combination of independent random variables drawn from this distri-

bution also has the same distribution. We note that, the Lévi distribution which is

known to have power law tails, also has this propertya. Nevertheless, even though

the tails of the histograms of observed log returns of stock prices seem to follow a

power law, they are thinner than those of the Lévi kind, which implies that they fall

off faster, and consequently possess finite variance. Concretely, in a detailed study

aThe Lévy distributions are parameterized with a constant 0 < α < 2 and they are characterized
with power law tails instead of the exponential decay of the Gaussian, which can be obtained for
α = 2. They are stable like the Gaussian which means that sum of two or more Lévy distributed
variables is Lévy distributed as well. As one can see in Bouchaud & Potters (2003), there are no
other stable distributions besides them.
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of the historical data of price returns, in Plerou et al. (1999), Amaral et al. (2000)

it was shown that the power law tail index of the cumulative distribution is close to

α = 3, which is apart enough from the Lévy region α ∈ (0, 2). As a consequence, a

sum of random variables drawn from such distributions does not produce a variable

distributed with the same kind – no such distribution is stable.

Student (1908) introduced a probability distribution applicable in statistics of

small sample size, which today is known as the Student’s t-distribution. It is parame-

terized with the number of degrees of freedom and is characterized with a power-law

tail index α. Although less tractable than the Gaussian, this distribution has also

frequently appeared as a convenient alternative for describing the log returns of dif-

ferent assets. In particular, in Blattberg & Gonedes (1974) it was used for modeling

stock dynamics, in Nadarajah et al. (2015) for currencies, while Platen & Rendek

(2008) have implemented it for modeling the returns of market indexes. Moreover, it

was used for study of joint distribution by Chicheportiche & Bouchaud (2012) and it

was obtained that it can provide a good fit for strongly correlated stocks. Since this

function fits the historical observations of the log returns rather well, particularly at

the tails, it has already found implementations for theoretical pricing of options. In

one non-Gaussian option valuation approach by Borland (2002a,b), the Student’s

t-distribution was obtained as a result of a correlated stochastic process. In another

proposal by Cassidy et al. (2010), as a basis was considered the theoretical result

that a mixture of Gaussians with stochastic volatility, such that the inverse of the

volatility is chi-squared distributed, follows the Student’s t-distribution. Empirical

verification of that fact by using returns of real data has provided justification for

the same authors to apply it for options pricing.

In this paper, we also utilize the Student’s t-distribution with three degrees of

freedom as an appropriate distribution for describing the dynamics of the log re-

turns of prices, and then apply it for pricing of European options. As such, this work

can be compared to two earlier contributions in the option valuation theory. In the

first approach by Borland (2002a,b) and Borland & Bouchaud (2004), the prices are

assumed to be driven by stochastic processes with statistical feedback which results

in distributions of log returns that are of Tsallis type – a generalization of the Stu-

dent’s t-distribution. The resulting models for pricing options offer determination of

the values for a whole range of strikes and maturities by using a single parameter.

In the second contribution, Cassidy et al. (2010) and Cassidy et al. (2013) apply

truncated Student’s t-distribution directly, and provide an analysis for the position

of the truncation point. Our valuation framework is primarily driven by the em-

pirical observations rather than aiming to provide a strong analytical theory. We

keep our focus as much as possible on the features of the returns of the stocks and

the related options, and use well known and simple techniques to derive a conve-

nient distribution. Nevertheless, we also provide an approximate analysis for the

theoretical basis of the proposed pricing scheme.

In order to implement the Student’s t-distribution for option pricing, its support



April 19, 2019 3:29 WSPC/INSTRUCTION FILE main

4 Basnarkov, Stojkoski, Utkovski and Kocarev

needs to be truncated (i.e. its support has to be restricted in some finite domain),

as otherwise the option prices would be infinite, see for e.g. Bouchaud & Sornette

(1994), McCauley et al. (2007) and Cassidy et al. (2010). This implies that the set

of extreme log returns far at the tails have to be neglected from the option price

valuation. In practice, there are two reasons which are able to provide explanation

for the implications created by this truncating procedure. First, in reality, it is safer

to assume that stock price movements do not scale infinitely and have a rather

unknown upper and lower limit. This follows from the observation that the dynamics

of stock prices are driven by social behavior of individuals which are able to observe

and base their investment decision on the available information for the underlying

stock and market. In fact, a plethora of other phenomena exhibit similar properties,

and therefore truncation has found application in a range of fields, spanning from

environment issues Maltamo et al. (2004) to traffic Cao et al. (2014). Second, while

overly extreme events are possible in the non-truncated distribution, we show that

there is a weak influence on the option prices for a certain range of values of the

width. In particular, we find that there is a region with very slow increase of the

option price as a function of distribution support width. In this aspect, the neglected

part of the support extends to probabilities which correspond to extreme events

happening rarer than once in a millennium. Therefore the option values obtained

with the proposed procedure could be considered as stable enough. The stability

practically implies that the price has low sensitivity to the location of the truncation

point when it is inside a wide enough region. This further indicates that option prices

obtained from distributions with truncated power law tails can be assumed to be

fair.

We use the resulting truncated distribution as a building block for obtaining

distributions that span different time intervals. The pricing scheme we propose here

is based on discrete time and the distributions for longer periods are generated

by convolutions of the elementary one. These distributions approximately provide

arbitrage-free price dynamics and consequently can be used for pricing options.

The predictive power of our model is compared to that of Black-Scholes-Merton

and the one proposed by Borland (2002b) as benchmarks. The latter comparison

offers an additional dimension for the applicative power of our model since it uses

the same distribution and can be used for options maturing at different dates. When

comparing the options prices obtained from our framework with those observed at

the market, one could see that it shows good accuracy in estimating the market

values of option prices with different strikes and expiry dates by using only one

parameter. To remind the reader, the Black-Scholes-Merton formula needs a whole

set of different volatilities to match the market values of options with different

strikes and maturities. The weakness of our model is in its confinement to discrete

time and that due to the calculations of the discrete Fourier transforms it has a

limit on the horizon to which it can provide results, which we believe is more of

numerical than of theoretical nature.
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We remark that this valuation procedure is not dependent on the proposed

distribution only and can be used with other distributions of log returns which can

be, for example, some distributions that track more closely the observations. Such

refinement could possibly result in better fit to the observed values from the option

market.

The rest of the paper is organized as follows. In the next Section 2 we provide

the general formula for calculation of the fair option price. After short introduc-

tion to insights of the price evolution in Section 3, in Section 4 we present the

proposed valuation procedure, and elaborate in more details the issues which arise

by implementing it. In Section 5 we describe the data used for verification of our

pricing method. Subsequently, in Section 6 we present the results of application of

our model on real data. The conclusion and discussion about future work are given

in the final Section 7.

2. Fair price of European style option

A European option on a risky asset is a contract between two parties for possible

future trade of that asset at certain strike price K and at some date T . The owner

of a “call” option has a right to buy, while the holder of a “put” option can sell the

asset. The strike price K and the expiration date T are fixed and are determined

in advance, at the moment of option writing, which for theoretical analysis one can

safely assume to be 0. European options can be exercised only at the moment of

maturity T , and the owner of a call option would do so if the stock price has a

market value S(T ) that is larger than the strike K. By buying the stock for K

and immediately selling it at the market for S(T ), the agent possessing the option

would capitalize the difference S(T )−K. Otherwise, when S(T ) < K, the option

has value zero, since the stock can be purchased on the market for lower costs. At

the time of writing 0, or any later moment t before maturity, when the option is

traded between an option holder to a new one, the current price of the underlying

asset S(t) is certain while there are only assumptions for its possible value at the

maturity. The fair value of the option should be the one which does not favor neither

the buyer, nor the seller. This means that, as seen from the current moment t, the

option value at the maturity should equal the expected gain obtained by exercising

the option. The expectation is considered as the mean value of all possible profits

S(T ) − K. We note that for calculation of this value and the current price of the

option no-arbitrage arguments are applied. This assumption indicates that there

exist risk-neutral probability distributions such that the expectation of the value of

the asset at any future moment, and particularly at the maturity T , discounted by

the riskless bond rate r, equals its price at the present moment t

S(t) = e−r(T−t)
E[ST (Ω)] = e−r(T−t)

∫

Ω

ST (Ω)pT (Ω)dΩ. (2.1)

In the last equation, Ω is a random variable which models the noise due to stochastic

events that determine the asset price, and E denotes the mathematical expectation.
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If alternatively, such probability measure pT does not exist, then arbitrage is pos-

sible. We point out that it is a rather challenging problem to have a good model at

some previous moment t of the probability distribution pT (Ω) which will encompass

all features that are typical for stock price dynamics and also one that does not al-

low arbitrage for different future moments. Once one has a risk-neutral probability

that describes the future asset values, the current value of any contingency on that

asset, and particularly an option, is set to exclude arbitrage on the option as well.

As is given in Ross (2014), when the risk-neutral distribution of the future price

of a stock is pT (S), the fair value of its European call option would be fair, if it is

obtained with the same discounting on the expectation of its value at the maturity

Ct = e−r(T−t)
E[CT (Ω)] = e−r(T−t)

∫ ∞

K

(S −K)pT (S)dS, (2.2)

where the integral is calculated only for the region of prices where the option has

non-vanishing value. Since the future is uncertain, we revert to expectations that

some features or rules observed in the past will remain in the upcoming time.

For example, any stock price is expected to grow on average, and consequently its

distribution is about to change as time evolves, but its growth patterns are likely

to persist. For that reason it is more convenient to directly model the probability

distribution of the price changes instead of that of the prices. Knowing that prices

grow exponentially on average, it is customary to express the relationship between

the known current and the future random price as

ST = Ste
µ(T−t)+x, (2.3)

where µ is the average stock growth rate, while x is a random variable that models

the excess price appreciation. This means that the difference of the logarithms of

prices, or the log return will be modeled with some distribution

p(x) = p [logST − log St − µ(T − t)] . (2.4)

In the last equation p(x) is a shifted version of the distribution of log returns

p [logST − logSt] for the amount of the drift µ(T − t). The distribution p(x) plays

a major role in the determination of the fair value of the options. Traditionally,

the log returns are modeled rather conveniently with the Gaussian distribution.

At one hand, this is appropriate whenever the random process is a result of many

independent random forces, which would describe the price movement as a result

of independent decisions made by the market participants. On the other hand, the

Gaussian distribution has many favorable properties which make the solution more

easily tractable than any other function. As such, this distribution is at the core of

the famous Black-Scholes-Merton option pricing framework. In addition, the Gaus-

sian distribution enables the construction of an alternative portfolio that results in

the same value as the option, as well as providing easiness in the calculation of the

other option attributes – the Greeks. Refer to Hull (2017) for more details about

this topic.
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To provide a specific example, we consider the formula for a European call option

price on a stock with instantaneous return rate µ and riskless interest rate r, when

the log return process is Gaussian

CT (t) = e−r(T−t)

∫ ∞

logK/St−µ(T−t)

[Ste
µ(T−t)+x −K]

1√
2πσ

e−
x
2

2σ2 dx. (2.5)

The lower integration bound is obtained from the situation when the stock price at

maturity equals the strike

Ste
µ(T−t)+xl = K. (2.6)

One can notice that the convergence of the integral (2.5) is ensured by faster decay

of the Gaussian distribution as compared to the exponential price growth. We note

that when the log returns follow the Gaussian, the distribution of the price will be

risk-neutral if one chooses r = µ+ σ2/2. Therefore, as is shown in Ross (2014), one

can obtain a much simpler version of the formula, and close form expressions for

the option price.

When one uses a distribution with fat tails, the option pricing integral (2.2)

would diverge since the exponential price term cannot be compensated with

any power law decay. Bouchaud & Sornette (1994), Cassidy et al. (2013) and

McCauley et al. (2007) provide explanation of such a problem. In this case, one has

to find some remedy, such as truncating the distribution sharply like Cassidy et al.

(2010) have suggested, or using one with far part of the tail falling off exponentially

as is proposed by Moriconi (2007) and Cassidy (2012). Clearly, the way of modeling

such heavy tailed distribution should be supported by theoretical explanation or

by empirical evidence. However, when one does not have sufficient data for precise

modeling of the extreme price shocks, the estimation of the tail of the distribution

of log returns is mixture between guesswork and convenience. Our choice was based

on convenience, without neglecting the empirical relevance of the selected proba-

bility distribution. Due to the simplicity we have chosen the first approach, which

means that the call option price would be calculated from

CT (t) = e−r(T−t)

∫ xmax

logK/St−µ(T−t)

[Ste
µ(T−t)+x −K]pT (x)dx, (2.7)

where xmax is the point where the distribution is truncated. Once one has fully

determined the option price formula (2.7), when Student’s t-distribution is used

for log return, the Greeks can be easily calculated as was shown by Cassidy et al.

(2013). Note that the same convergence problem would not appear for put options,

which are characterized with nonzero value at maturity when the stock price S is

lower than the strike K. Hence, by averaging over the distribution of the returns

on the underlying stock the current put option price is

PT (t) = e−r(T−t)

∫ logK/St−µ(T−t)

−∞

[K − Ste
µ(T−t)+x]pT (x)dx. (2.8)
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The last integral converges due to the exponential decay of the price at the first

limit of the integration regardless of the decay type of the distribution. However,

as we will see later, the prices for the put options can be calculated from those of

the calls, by using the well known put-call parity. The reader can find more details

about this relationship in Hull (2017).

3. Empirical observations of stock price dynamics

A view on stock price charts of any company traded at developed market would not

reveal any regular mechanism causing its changes. It features random wiggling even

on smallest time scales. There is no doubt that any model of such financial time

series should include certain level of randomness and involve appropriate probability

distributions. However, to our knowledge, there is no probability distribution of

returns that incorporates all observed features while providing easy mathematical

tractability.

The Gaussian or the normal distribution is the one that should be expected

whenever the variable under observation is influenced by a sum of many independent

random forces with identical variance. Stock price changes are result of the demands

and offers of the market actors which have different needs and opinions about the

stock’s worth. It is a plausible assumption that their decisions are more or less

independent and consequently their behavior would drive the price in such a way

that its changes within any interval of observation will be normally distributed.

Moreover, due to the very well developed mathematical tools for the Gaussian, one

is pushed towards believing that this distribution is the most appropriate one.

However, the studies of the histograms of log returns of prices do not correspond

to the Gaussian distribution when one accounts for extreme events. They seem to

have rather fat tails, which practically means that large changes, whether price

appreciations or crushes, happen more often than the Gaussian distribution pre-

dicts. In a particular study about the cotton prices made about half a century ago,

Mandelbrot (1963) has suggested that the corresponding changes could be more

appropriately modeled with Lévy distribution with tail index α = 1.7, which means

that the corresponding probability density falls off as 1/x2.7 function. More recently,

in a wider study encompassing much more data from different stocks, Plerou et al.

(1999) and Amaral et al. (2000) have obtained that for short periods of observa-

tion the price changes distributions indeed fall off as power law but much faster,

characterized with tail index around 3 (α ≈ 3). This is apart enough from the

Lévy region (0,2) which means that these distribution functions have finite vari-

ance. According to the Central Limit Theorem, the sum of independent random

variables drawn from identical distributions with finite variance converges towards

the normal distribution when the number of the variables grows indefinitely. Then

one should not be surprised from the findings within the same work which show

that for longer periods the price changes seem to converge slowly towards Gaussian

distribution. The convergence rate towards Gaussian is very nicely explained in
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Bouchaud & Potters (2003). Thus, one is suggested to believe that an appropriate

model of price fluctuations should apply fat tail distributions for shorter periods,

while the Gaussian should be used when one considers returns for longer periods,

as is done, for instance, by Cassidy (2011). We note that there have been attempts

for theoretical explanation of the emergence of heavy tails. In specific examples,

Lux & Marchesi (1999) use the interaction between the agents as a reason to prove

the appearance of scaling, whereas Gabaix et al. (2003) attribute these phenomena

to the action of large market players.

4. Option valuation framework

4.1. Mathematical background

Here we provide a short overview of the basic mathematical tools needed to under-

stand the full potential of the proposed pricing framework. In a discrete time system

as respective time unit is usually taken the smallest interval at which changes of

the system happen. At the end of each such interval i the price changes its current

value Si to Si+1 = Xi+1Si, where Xi+1 is a random multiplier which encapsulates

the change. The multipliers are usually taken to be independent, and for simplicity,

one can consider a scenario where the initial price is normalized to S0 = 1. If at

every interval, the price is multiplied by some random number Xi, then its random

value at moment N in the future would be

SN = S0

N
∏

i=1

Xi =
N
∏

i=1

Xi. (4.1)

Since, on average, all prices grow, it is convenient to extract the mean growth factor

and express the random multiplier as

Xi = MX̃i = eµ+xi , (4.2)

where µ is the mean growth rate µ = logM and xi = log X̃i is the random excess

growth rate. Assuming that the mean growth rate is constant, the future stock price

can be expressed as

SN = eµN
N
∏

i=1

exi. (4.3)

The last expression suggests that in order to obtain the probability distribution

of the final price SN one should find a distribution of a product of random vari-

ables. When one multiplies random numbers instead of adding them, in order to

apply the mathematical machinery available, it is more appropriate to consider the

distribution of their logarithms, which results in the logarithm of the price given as

logSN = µN +

N
∑

i=1

xi. (4.4)
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Then, from a known result in probability theory, the probability density function

we are searching for, is obtained from convolution of the probability densities of

the logarithms of the individual random multipliers. More precisely, when each

multiplier has respective density pi(x) = Prob(log X̃i = x) the distribution of the

logarithm of the final price is given by the convolution

Prob(logSN − µN = x) = (p1 ∗ p2 ∗ · · · ∗ pN )(x), (4.5)

where the convolution of two functions is the integral

(f ∗ g)(x) =
∫ ∞

−∞

f(y)g(x− y)dy. (4.6)

The convolution operation has a very useful property which states that a Fourier

transform of convolution of two functions is product of the Fourier transforms of

those functions. In the finance literature, one can find about the convolution op-

eration for example in Bouchaud & Potters (2003). Then, the Fourier transform of

the probability of the logarithm of the final price is

pN = F [Prob(logSN − µN = x)] =

N
∏

i=1

pi, (4.7)

where

pi = F [pi(x)] (4.8)

is the Fourier transform of the distribution of the logarithm of the individual price

increment at the iteration i. Going back to the original problem, the probability

distribution of the log price is obtained with inverse Fourier transform

PN (x) = Prob(logSN − µN = x) = F−1

[

N
∏

i=1

F [pi(x)]

]

. (4.9)

The last formula can be used for any distribution of logarithm of price changes (log

returns) for which the Fourier transform exists. For example, the Gaussian distri-

bution is very attractive for such applications since its Fourier transform has also

exponential form, and consequently, a sum of any number of Gaussian distributed

numbers has the same distribution.

4.2. Modeling probability distributions of returns

A direct approach for selecting an adequate probability distribution for the price

returns is to use empirical distributions obtained by fitting historical data of stock

prices. Nevertheless, one should be cautious of the reliability of these distributions

due to the lack of sufficient data which is necessary for good fitting, especially at

the tips of the tails. Another path that can be followed involves using distribution

functions which have desirable properties such as power law tails, as is observed

from the stock markets, or have known Fourier transforms with a possibly simple
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enough form and which offer tractable mathematical analysis, or something similar

which results in better convenience in terms of analytical treatment.

In this regard, even earlier studies by Fama (1965) and Blattberg & Gonedes

(1974) have empirically shown that the tails of the distribution of observed stock

log returns are better modeled if they are taken to fall off as a power law instead of

exponentially as Gaussian distribution does. Moreover, as is shown in Plerou et al.

(1999) and Amaral et al. (2000), the tail index of the cumulative distribution is

close to three, which means that the corresponding probability density falls off

as 1/x4. A probability density function with such tail index is the Student’s t-

distribution with three degrees of freedomb. Consequently, many works, like those

by Borland (2002b), Borland & Bouchaud (2004) and Cassidy et al. (2010), that

propose option valuation formulas based on the Student’s and related distributions

have started to emerge. The Student’s t-distribution is identified with the number

of degrees of freedom and a width parameter γ. The density of this distribution

with three degrees of freedom is

pS(x) =
2γ3

π(γ2 + x2)2
. (4.10)

It is also very convenient, because it has rather simple Fourier transform

FS(ω) =
1√
2π

(1 + γ|ω|)e−γ|ω|. (4.11)

It is worth noting that the standard deviation σ =
√

E[x2pS(x)] of this case equals

its parameter γ = σ. By the convolution property (4.7), a sum ofN random variables

drawn from this distribution has a Fourier transform which is a power of the last

function, i.e.,

FG,N(ω) =
1√
2π

(1 + γ|ω|)Ne−Nγ|ω|. (4.12)

The distribution of the sum of many one step log returns is obtained with the

inverse Fourier transform. By expanding the Fourier transform for small argument

around the origin, as is shown in Bouchaud & Potters (2003), the convolutions of

any order have the same tail index. Because it has finite variance, accordingly to

the Central Limit Theorem, a sum of infinitely many random variables drawn from

this distribution follows a Gaussian distribution. However, the convergence toward

Gaussian is such that the convolution of a large number of elementary distributions

is Gaussian-like only at the central region around the mean, but not the tails. As

seen from another point of view, the more summands one has (larger N) the tail

dominance region is pushed further towards infinity, and thus the sum becomes

more like the normal distribution mainly at the body and upper part of the tails.

bNote that the Tsallis distributions constitute a wider class with real number tail indices making
the Student’s t-distribution a special case of it. See Queiros et al. (2005) for more insight about
the Tsallis distribution.
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An analysis of the potential of these features of the Student’s t-distributions for

option valuation has been discussed in Cassidy (2011).

4.3. Truncation of heavy-tailed distributions of returns

In developing a theoretical valuation framework one needs distributions of the log-

arithmic stock returns for different periods of observations in order to be able to

price the options with different maturities. For the stable distributions like the

Gaussian and Lévy ones, convolution of any number of variables is distributed like

one variable up to a scale factor. Thus, one needs to estimate only the appropriate

parameter of the distribution for certain period and then automatically has them

completely determined for any period. For other distribution types the functional

form is not preserved under the convolution operation. Thus one cannot use a fam-

ily of Student’s t-distributions with different variances for modeling log returns for

different periods if they represent sums of independent and identically distributed

random variables. Although the fall-off parameter at the tails is preserved under

convolution, the body of the distribution starts to resemble the Gaussian as one

adds additional variables. This reasoning leads to the idea that one should try to

take the Student’s t-distribution with appropriately fit variance for certain unit

period and then use its convolutions for multiple periods.

Unfortunately, as it was already seen, the power law decay cannot compensate

the exponential growth of the price in calculation of a call option value, and one

must either change the tip of the tail of the distribution to exponential or truncate

it as given in equation (2.7). A truncated version ftrunc(x) of a function with infinite

support is one that is identical to the original inside some region (xmin, xmax) while

zero outside

ftrunc(x) =

{

f(x) xmin ≥ x ≥ xmax;

0 elsewhere.
(4.13)

Any truncated function can be represented as a product of the non-truncated version

and a rectangle function

rect(x) =

{

1 xmin ≥ x ≥ xmax;

0 elsewhere,
(4.14)

which has value one only in the part that remains from truncation, while zero out-

side. Then, the characteristic function of the truncated function, as a product of

two functions, is convolution of the original and that of the rectangle due to the

convolution property of the Fourier transform. The Fourier transform of the rectan-

gle is the Sinc function sinc(x) = sin(x)/x which is also a spherical Bessel function

of order zero. In this case, the Fourier transform of the truncated distribution is

calculated as an integral of the form (see eq. (4.6))

Ftrunc(ω) =

∫ ∞

−∞

F(η)
sin(ω − η)

ω − η
dη. (4.15)
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For the case of the Student’s t-distribution, the Fourier transform we need is an

integral of product of exponential function with real argument and shifted spher-

ical Bessel function. In the literature, to the best of our knowledge, there is no

closed form solution for such integration. This implies that the Fourier transform

of the truncated Student’s t-distribution cannot be expressed through the known

elementary or special functions. To remind, that is the building block of our fam-

ily of distributions, because the price change distributions for various intervals are

inverse Fourier transforms of powers of functions like (4.15). Thus, if someone is

willing to pursue along this path, one must rely only on numerical methods. The

rest of the recipe would include numerical determination of the convolution (4.15)

of the Fourier transform of the Student’s t-distribution with the Sinc function, then

raising it on desired power and calculating inverse Fourier transform. In order to

obtain the probability density one should finally make appropriate rescaling due to

the probability loss which resulted from truncation.

In another, approximate, but more simple approach, one can first obtain the

necessary number of convolutions of the elementary Student’s t-distribution and

then make the truncation. In this way one could capture the tail behavior, while

simultaneously providing Gaussian-like body of the distribution at the limit. To

remind, the extensive analysis of the stock price returns by Plerou et al. (1999) and

Amaral et al. (2000) have suggested power law tails for smaller periods and resem-

blance to Gaussian for longer periods. We emphasize that this approach provides

functions which are only approximation of convolutions of truncated Student’s t-

distributions. For reasons that will be explained later in Section 4.5, here we chose

to also truncate the convolutions in the same interval (−Mγ,Mγ) and accordingly

produce an analysis of the quality of the approximation only in that interval. In

order to understand this better, one should first observe that the total probabil-

ity corresponding to rare events, which are removed by the truncation and that

are outside of central region of the Student’s t-distribution for large number M of

standard deviations is bounded as

Pextreme = 2

∫ ∞

Mγ

2γ3

π[γ2 + x2]2
dx <

4γ3

π

∫ ∞

Mγ

dx

x4
=

4

3πM3
. (4.16)

This means that the Student’s t-distribution which is truncated far at the tails

remains nearly normalized. Similar result should hold for the convolutions of it.

Denote by p
(2)
S the convolution of two Student’s t-distributions and its truncated

version by p
(2)
S,T . Also, let p

(2)
TS is the convolution of two truncated Student’s t-

distributions. For clarification of this reasoning in figure 1 are shown two shifted

Student’s distributions with dashed curves and their (not normalized) truncated

versions with full curves. By definition, convolution at each point is an integral of

the product of the two functions. Thus the convolution of two truncated Student’s

distributions will miss the part of the integral where any of the functions is zero.

The difference between the two convolutions ǫ2(y) = p
(2)
S,T (y) − p

(2)
TS(y) is given
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Fig. 1. A sketch of two Student’s t-distributions (dashed) with their truncated versions (full).
Note that the truncated and non-truncated functions coincide, where the first one is nonzero. This
coincidence happens when the truncated function is not normalized.

by two integrals of the following form (refer to Figure 1)

ǫ2(y) ≈ 2

∫ ∞

Mγ

pS(x)pS(x− y)dx = 2

∫ ∞

Mγ

2γ3

π(γ2 + x2)2
2γ3

π[γ2 + (x− y)2]2
dx, (4.17)

where y is the point where we look at the error, or the displacement between the

peaks of the two distributions involved in the integral. We remind that the error

is approximation because the truncated distributions should be normalized, and

we have used the symmetry of the distribution. As one can see from Hardy et al.

(1952) a good estimate of the error can be obtained by using the Hölder inequality

for integrals

∫

|f(x)g(x)|dx ≤
(
∫

|f(x)|pdx
)1/p (∫

|f(x)|qdx
)1/q

, (4.18)

which holds for real powers p, q ∈ [1,∞) satisfying 1/p + 1/q = 1. Then the esti-

mation of the error reads

ǫ2(y) ≤ 2

[
∫ ∞

Mγ

(

2γ3

π(γ2 + x2)2

)p

dx

]1/p [∫ ∞

Mγ

(

2γ3

π[γ2 + (x− y)2]2

)q

dx

]1/q

= 2

[
∫ ∞

Mγ

(

2γ3

π(γ2 + x2)2

)p

dx

]1/p [∫ ∞

Mγ−y

(

2γ3

π(γ2 + x2)2

)q

dx

]1/q

.(4.19)

One can easily notice from the second integral in the last expression that the error

grows with y reaching its maximum at y = Mγ. Since the integrand in the first

integral decays faster, it is more convenient to take p to be larger than q. By using
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the following inequality

1

(γ2 + x2)2
<

1

x4
, (4.20)

for p → ∞ one can obtain the following bound for the first term in the error

estimation

[
∫ ∞

Mγ

(

2γ3

π(γ2 + x2)2

)p

dx

]1/p

<
2γ3

π

[
∫ ∞

Mγ

dx

x4p

]1/p

=
2γ3(Mγ)

1−4p

p

π(4p− 1)
1
p

≈ 2

πγM4
.

(4.21)

Due to the relationship between the parameters p and q in the Hölder inequality,

for p → ∞ one should take q = 1, or

[
∫ ∞

Mγ−y

(

2γ3

π(γ2 + x2)2

)q

dx

]1/q

=

∫ ∞

Mγ−y

2γ3

π(γ2 + x2)2
dx. (4.22)

This integral has its maximal value 1/2 when y = Mγ due to the normalization,

while for general values of y it is smaller. In figure 2 with red curve is given the

estimate of the bound of the error by using (4.21) and (4.22) and divided with

the probability density of the convolution at that point ǫ(y)/p
(2)
S (y). One can see

that the error becomes significant only when y is few standard deviations from

the truncation point Mγ. It means that instead of convolution of two truncated

Student’s t-distributions, within the region of interest, (−Mγ,Mγ), one can take

truncation of convolution of two Student’s t-distributions. By using induction one

can obtain that such estimate of the error can be obtained for convolutions of many

Student’s t-distributions as well. For that reason, denote in the same manner as

above the convolution of n− 1 Student’s t-distributions as p
(n−1)
S . Now, take as an

induction hypothesis that truncating convolution of n − 1 distributions p
(n−1)
S,T is

an approximation of convolution of n− 1 truncated distributions p
(n−1)
TS . Denote by

p
(n−1),1
TS the result of convolution of this approximation with one truncated Student’s

t-distribution pTS . This should be an approximation of convolution of n truncated

Student’s t-distributions p
(n)
TS . Then the error between the truncated convolution of

n distributions p
(n)
S,T and the convolution of n truncated distributions p

(n)
TS will be

ǫn(y) = p
(n)
S,T − p

(n)
TS ≈ p

(n)
S,T − p

(n−1),1
TS = p

(n)
S,T − p

(n−1)
S,T ∗ pS,T , (4.23)

where we remind that the star denotes the convolution operation. The last approx-

imation will be calculated by integral similar to (4.17) which is a product of the

tails of the Student’s t-distribution and a convolution of n − 1 functions of that

kind. Consequently, the goodness of this approximation ǫn(y) = by the by Hölder

inequality will be bounded as

ǫn(y) ≤ 2

[
∫ ∞

Mγ

(

2γ3

π(γ2 + x2)2

)p

dx

]1/p [∫ ∞

Mγ−y

[

p
(n−1)
S (x)

]q

dx

]1/q

. (4.24)
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Again, for p → ∞ the first term in the last equation is bounded as in (4.21). The

second can be studied numerically by using n − 1 convolutions of the Student’s

t-distribution. However, because the closed form of these is not known, we have

obtained them from their Fourier transforms. As will be explained in more details

below, the Fourier transform and its inverse are conveniently studied numerically by

Fast Fourier Algorithm, which provides samples of the functions. For this purpose,

we have used samples in the truncated region only, (−Mγ,Mγ), since for up to

several dozens of convolutions of the Student’s t-distribution, most of the proba-

bility mass is contained there, which was verified numerically. This means that the

integration only within this region does not differ much from the proper one which

stretches to infinity. In figure 2 is given a bound of the error between truncating

n convolutions p
(n)
S,T and convolution of truncated Student’s t-distribution pTS and

truncated convolution of n − 1 distributions p
(n−1)
S,T , divided by the convolution of

n distributions at every point of interest. As can be seen, such relative error in the

probability density is non vanishing only near the truncation point. This might sug-

gest that one could make significant error in estimating the extreme events, which

is probably correct. But, our knowledge of the distributions of log returns in this

region is very rough due to the insufficiency of data, so we are also not sure that

the distribution has such tails in that region as well. We could summarize that,

for practical reasons, one can use convolutions of the Student’s t-distribution and

then perform truncation in order to obtain distributions of log returns for different

horizons.

4.4. No-Arbitrage Principle

One of the key concepts in the finance is the absence of free lunch. This is a simpli-

fied expression which implies that if there is some mispriced item in the market, the

traders would surely notice it and immediately start buying or selling depending

on the direction of misprice and their actions would push the price towards the

proper value. Nowadays, when information is spread rather quickly, one expects

such arbitrage opportunities to not exist, apart on very short periods. One of the

most important mathematical results in finance is the fundamental theorem of asset

pricing. See Harrison & Pliska (1981), Kreps (1981) and Delbaen & Schachermayer

(1994) for proofs of its variants. It states that the absence of arbitrage in a market

coincides to the existence of equivalent risk neutral probability measure. This prob-

ability measure is different from the one observed in the real world. The expectation

of the future value of an asset with respect to the real observations usually produces

larger value, as compared to that obtained when the neutral probability is used.

This can be explained with the fact that investment in a stock is riskier than in a

bond and the investor in the former must be compensated for that. A recent work

by Cassidy (2018) provides an engaging analysis when the these two probabilities

differ. This theoretical measure is very useful, since it allows determination of the

fair values of spot prices of stocks and their derivatives. The price of a derivative
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Fig. 2. Bounds on the difference between truncating convolutions of Student’s t-distributions and
convolutions of truncated Student’s t-distributions. The red circles correspond to 2 distributions,
while the green ones for convolution of 50 distributions. In this example the Student’s t-distribution
has γ = 0.02 and the truncation point is at 100 standard deviations, or Mγ = 2.

is the expectation of its apparently random future value calculated with respect to

the risk neutral probability and then discounted back to any previous time, and

particularly to the current moment. The discounting is performed with the riskless

bond rate r. By the arbitrage theorem, this indicates that an investor can not make

a sure profit out of nothing, or alternatively, no portfolio can grow more than the

rate r without risk. To be more specific, taking that the expected value of a stock in

some future moment T is E[S(T )], discounting it with the bank rate should result

in its present value

S(t) = E[S(T )e−r(T−t)]. (4.25)

As expressed in terms of the fundamental theorem of asset pricing, the process

modeling the price of a stock will be appropriate if knowing its value S(u) in the

past up to the present moment t, provides the following estimate of the average of

its future development

EP [e
−rTS(T )|S(u), 0 ≤ u ≤ t] = e−rtS(t), (4.26)

where the average is calculated with respect to the risk neutral probability density

P = p(x). The last expression can be found in Ross (2014). If for a stock such
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distribution exists, than, by the theorem, the same distribution can be used for

obtaining fair values of contingencies on that stock. Thus, when one tries to use

some probability distribution for such purpose, one should first verify whether it is

in accordance to the theorem.

In this work we model the price dynamics in discrete time and thus any future

price is given as

S(t) = S(0)eµt+x, (4.27)

where µ is the single step rate of return of the stock, while x is the random excess

return, which due to the numerous historical observations of the stock markets,

we will conveniently describe its probability with truncated t− fold convolutions of

Student’s t-distribution with three degrees of freedom. The expectation taken with

respect to the truncated convolutions of the Student’s t-distribution will be

EPT
[e−rTS(T )|S(t)] = e−rT

∫ xmax

−xmax

S(t)eµ(T−t)+xpT (x)dx. (4.28)

In the last equation we have intentionally put index T to the risk neutral distribution

P in order to emphasize that it is different for different moments T . One can notice

that in the last equation appears the moment generating function of the random

log return
∫ xmax

−xmax

expT (x)dx = E[eX ] =

∞
∑

i=0

mi

i!
, (4.29)

where mi is the i-th moment. For symmetrical distributions only even order mo-

ments are nonzero. Also, when the higher order moments can be neglected one can

obtain simpler approximation. In general, it is not easy to determine all moments

for different periods T . However, for independent and identically distributed vari-

ables, the second moment accumulates linearly with time, so within the period T −t

one has
∫ xmax

−xmax

x2pT (x)dx = (T − t)γ2, (4.30)

where γ2 is the variance corresponding to single step. When the higher order mo-

ments can be neglected, which for example is the case when the variance is rather

small γ2 ≪ 1, one has
∫ xmax

−xmax

eµ(T−t)+xpT (x)dx ≈ eµ(T−t)[1 +
(T − t)γ2

2
] ≈ e(µ+γ2/2)(T−t). (4.31)

Like the case with the Brownian motion, one could ask for similar relationship

between the bank rate, stock’s growth rate and the variance of the distribution

r = µ+ γ2/2. (4.32)

This would imply that the convolutions of the truncated Student’s distribution are

approximately risk neutral distributions in the case of discrete time dynamics

EPT
[e−rTS(T )|S(t)] ≈ e−rtS(t). (4.33)
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In order to estimate the accuracy of the last expression we have numerically calcu-

lated the following difference
∫ xmax

−xmax

expT (x)dx − eTγ2/2, (4.34)

for various moments T for truncated Student’s t-distribution with daily standard

deviation γ = 0.02. It was obtained that the difference grows as it is expected and

for period of T = 64 days it is only 0.5% of the demanded value E[eX ]. One can

argue then that, if arbitrage exists, it is at least not so large and can not provide

significant profits. Thus, in this discrete time pricing framework, one can take that

the log returns are conveniently described with convolutions of the Student’s t-

distribution.

Such good approximation of the moment generating function generated solely

by using the variance is a consequence of the fact that the most of the probability

mass for the Student’s t-distribution is within several standard deviations (several

γ in this case), where the exponential factor ex is fairly well approximated with a

quadratic polynomial. Its explosive effect becomes important at the limits of the

integration, which is avoided by the truncation of the distribution. Obviously, the

precise relationship between the moment generating function and the variance has

more general form
∫ xmax

−xmax

expT (x)dx = eTf(γ2,T), (4.35)

where f is some function which encodes the impact of all moments through γ. We

emphasize here that f is a time dependent function, since higher order moments

of the convolutions of a distribution do not grow linearly in time in general, as the

variance does. Therefore, the distributions we consider here are risk neutral if the

following relationship holds

r = µ+ f
(

γ2/2, T
)

. (4.36)

In this case, for constant rate r, the relationship between the stock’s growth rate

and the unit-period variance will be nonlinear. This could be an engaging topic for

future research.

4.5. Option price sensitivity on the truncation point

As we have seen from the definition of the fair value of call option (2.7), using prob-

ability density function for log returns which falls off according to power law, would

result in infinite option prices. When one chooses to use truncated distributions as a

remedy for avoiding the divergence, one is left to determine the truncation point. In

order to obtain more insight about it, we have made an analysis of the dependency

of the option price on the width of the distribution which is determined from the

truncation point. We have found that fitting closest to expiry options with values

obtained by our method to those observed from the market, the parameter γ has
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taken values in the range 0.01 and 0.03, so we have opted to make the sensitivity

analysis with the middle of that range γ = 0.02. As an example, in figure 3 is

shown the dependence of the option price for strike which is 10% less (at left) or

more (at right) than the spot value of a stock taken to be one dollar, on the log

return distribution width. The three curves in red, blue and black correspond to

options which are 1, 8 and 64 days to maturity and with annual bank rate of 2%

which nearly matches the values in the period when the data was studied (end of

February and beginning of March, 2018). For better insight, the curves are plotted

in logarithmic scales for both axes. As can be seen there is a region of very slow

growth, that is narrower for the out-of-the money options. This higher sensitivity

is due to the fact that in calculation of such options only the tail part of the dis-

tribution contributes, because they will have non zero value at maturity only if the

price rises for more than five standard deviations. This region of weak dependence

roughly extends from xmax ≈ 0.6 up to xmax ≈ 6, which corresponds from M ≈ 30

up to M ≈ 300 standard deviations for the chosen distribution. A practitioner of

this approach could thus take some point in between, for example xmax = 2 which

corresponds to M = 100. To obtain a meaningful relationship between the bound-

aries of the ’plateau’ with the statistics of the log returns one could find the total

probability which corresponds to the truncated part of the Student’s t-distribution.

The total probability of occurrence of events from Student’s distribution that are

apart many standard deviations from the mean can be bounded as in equation

(4.16). Thus, for the lower bound of the plateau, M ≈ 30, the total probability of

such extremes is roughly 1 in 64 000. Since γ = 0.02 corresponds approximately

to price change fluctuation for one day and there are roughly 250 trading days in

a year, it means that the events corresponding to the tips of the tails would hap-

pen less frequently than once in two and a half centuries. The other border of the

price plateau that corresponds for M ≈ 300, by the same reasoning as above yields

probability one in 60 million for the events at the tips of the tails. This translates

to situation happening once in 1.2 million years! This analysis suggests that if this

power law tail extends long enough, which means that it holds for extremely rare

events (up to once in many centuries), the obtained call option prices would be

(really) fair. Otherwise, if the power law breaks closer to the body of the distribu-

tion, which might mean that the large price changes are impossible, then the option

prices obtained with this method would be very sensitive on the point where the

distribution is truncated (see the right part of the curves in figure 3).

For better understanding of this plateau in the table 1 are provided the call

option prices for a stock with spot price of one dollar, and strikes ten percent more,

or less. The parameter of the distribution of the log returns is again γ = 0.02, and

respectively for M = 100 standard deviations the truncation point is xmax = 2. The

left and right boundaries of the plateau were arbitrarily chosen to be xmax,l = 1

and xmax,r = 5 respectively. The corresponding prices for the left, middle and right

boundary points are denoted with C left, Cmiddle, and Cright respectively. To estimate

the inclination of the plateau we have calculated the mismatch between the prices
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Fig. 3. Dependence of the option price on the price returns distribution support width xmax for
the presented method for call options which are 1 (in red), 8 (in blue) and 64 (in black) days from
maturity. The left panel shows an example of in-the money, while at right are given out-of-the
money options.

for truncation points at the boundary and the middle as ∆C left = C left−Cmiddle and

∆Cright = Cright −Cmiddle. As can be seen for the in-the money options the option

prices are rather stable within the plateau, for the three horizons considered: 1, 8,

and 64 days. For the out-of-the money options the values are much more sensitive,

up to ten percent, which is due to the fact that only the tail part of the distribution is

used in calculation of their values and thus the truncation point is rather important.

One can obtain another meaning of the truncation point by observing the price

growth corresponding to it. If one chooses to use 100 standard deviations, or xmax =

2, the growth factor is e2 ≈ 7.4. This might seem achievable for some stocks for

period of several months, but for such stocks one could take higher truncation point,

which is a little bit closer to the right boundary of the plateau. For instance, by

taking xmax = 3, the growth factor is e3 ≈ 20. Although in this case the call option

price is more sensitive to the location of the truncation point, growth of of this size

for period of a year or two, seems impossible for any asset. We could summarize that,

at least for economic growth typical for our age, fair prices of options calculated by

using such power law tailed distributions are likely ‘fair’.

The existence of a wide enough region of the location of truncation point for

which the call option prices are weakly sensitive is welcomed in option valuation

schemes based on truncated distributions. Moreover, the location of the plateau is

such that the probability of events that are excluded from consideration in estima-

tion of the option values, is very small. Unfortunately, this has drawbacks as well.

In particular, one cannot use a truncated Student’s distribution for the log returns

in some unit time interval and then strictly apply the independence of consecutive

returns for the other, longer periods. The convolution has the property of adding



April 19, 2019 3:29 WSPC/INSTRUCTION FILE main

22 Basnarkov, Stojkoski, Utkovski and Kocarev

Table 1. Option price plateau inclination

Days to expiry (ITM) C left Cmiddle Cright ∆C left ∆Cright

One day 0.100 0.100 0.100 −0.000 0.000

8 days 0.101 0.102 0.102 −0.001 0.000

64 days 0.124 0.125 0.125 −0.008 0.002

Days to expiry (OTM) C left Cmiddle Cright ∆C left ∆Cright

One day 0.000 0.000 0.000 -0.087 0.038

8 days 0.002 0.002 0.002 -0.048 0.020

64 days 0.028 0.029 0.029 -0.036 0.009

the width of the finite-support probability distributions. In repeated convolutions

this results in linear dependence of the width of the distribution on the number

of unit periods. Then, the widths of the distributions ranging from one to several

dozens of periods cannot fit in the plateau. Thus, either the unit period distribu-

tion needs to be too narrow and thus leave the plateau from the left side, or those

for longer periods would do the same at the right boundary. For this purpose we

choose to truncate all distributions at the same point. Clearly, this is in conflict

with the statistical independence of consecutive returns. Truncating convolution of

two distributions means that, roughly speaking, small and moderate returns are in-

dependent but not the large ones. The situations in which extremely large returns

are preceded or followed by returns of medium or large size are considered impos-

sible. We believe that abandoning of the statistical independence of log returns of

all scales is acceptable, because the extremely large gains or falls are rare. As seen

from another perspective, truncating the distributions with different periods at the

same point is in fact capping of the log return. Indeed, one might find acceptable to

consider that gains exceeding eγM are highly improbable for one or two years, and

even nearly impossible for shorter periods. We summarize that this is a favorable

trade off for obtaining a family of distributions of log returns, which resembles the

observed ones at the tails fairly well and provides option prices weakly sensitive on

the truncation point.

4.6. Practical determination of the distributions of stock returns

As it was elaborated above, we chose to use the Student’s t-distribution for pricing

options since it allows analytical treatment to some extent. It has closed form expres-

sions of the Fourier transforms of distributions which are convolutions of it (4.12).

However, inverse Fourier transforms are not easy to obtain. Therefore, we are left

with numerical calculation of these inverse Fourier transforms. Instead of mak-

ing numerical integration as the inverse Fourier Transform is defined, one can use

some algorithms for its practical calculation, for example that by Cooley & Tuckey

(1965). This, so called Fast Fourier Transform (FFT) is an efficient approach for

calculation of the (discrete) Fourier transform of a sequence pn and results in a
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sequence of Fourier coefficients Pn. When the original sequence is obtained by sam-

pling some function p(x) then the Discrete Fourier Transform fairly well represents

samples of the (continuous) Fourier transform of the function p = F(p(x)) if the

sampling interval is small enough. Thus by applying FFT and its inverse one can

obtain samples from the probability density function or from its characteristic func-

tion. Next, these samples could be interpolated in order to reach to the desired

function or use them directly in numerical routines for respective calculations, like

determining values of integrals which correspond to option prices. The usefulness of

the FFT is particularly effective in determination of Fourier transforms of irregular

sequences (or functions) or those for which analytical results do not exist or are not

established yet. For options pricing purpose it means that one can use some em-

pirical probability density of log returns and then by applying FFT and its inverse

one can determine probability density for accumulated log returns. We remind that,

due to the high sensitivity of the option price when the support of the distribution

is outside certain region, one should be careful with the location of the truncation

point.

Since algorithms for FFT are rather exploited in different disciplines one can

easily find functions for computation of FFT in many programming packages. Then

one willing to apply our option pricing procedure needs to implement only numerical

routines for calculation of the integrals which can be conveniently represented with

sums.

4.7. A note on Put-Call parity

In calculation of values of puts, one can apply the well known relationship between

the call and put option price for certain stock for same strike price and maturity,

which can be found for example in Hull (2017). It one of its forms it reads

CT (t)− PT (t) = S(t)−DK = S(t)− e−r(T−t)K, (4.37)

where D = e−r(T−t) is used as discount factor. If one uses the relations for the call

(2.7) and put options (2.8) and join the integrals will obtain

CT (t)− PT (t) = e−r(T−t)

∫ ∞

−∞

[Ste
µ(T−t)+x −K]pT (x)dx

= Ste
(µ−r)(T−t)

∫ ∞

−∞

expT (x)dx − e−r(T−t)K. (4.38)

By applying the approximate no-arbitrage argument (4.31) which holds for distri-

butions with small variance γ ≪ 1, from the last equation one will easily recover

the Put-Call parity (4.37).

5. Data

In general, the theoretical valuation is focused on European options since they have

the simplest form. However, when data for European options is scarce, for empirical
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analysis one should seek alternatives for testing her or his schemes. In this aspect,

as given in Hull (2017), one can rely on the fact that American options on non-

dividend-paying stocks have the same value as their European variety. Hence, the

empirical testing of a pricing scheme of European options can be done by utilizing

data on American options.

For this reason, here we have opted to look at American options freely available

data from the Nasdaq’s Options Trading Center. The Nasdaq stock market offers

daily data free of charge for options of all companies quoted therec. However, the

options for most companies have small sample size and with them credible con-

clusions can not be reached. Therefore we have restricted the empirical analysis

to a selected group of companies that have large market capitalization and whose

options are more frequently traded. In addition, we kept in mind for the selected

group to be diverse enough in terms of the industrial sectors that are represented.

A full list of the used companies as well as the industrial sector they belong to is

given in Table 2.

Table 2. List of studied companies

Symbol Name Sector

AAPL Apple Inc. Technology

GOOGL Alphabet Inc. Technology

AMZN Amazon.com, Inc. Consumer Services

MSFT Microsoft Corporation Technology

PEP Pepsico, Inc. Consumer Non-Durables

AMGN Amgen Inc. Health Care

VOD Vodafone Group Plc Public Utilities

TSLA Tesla, Inc. Capital Goods

For all selected companies we collected the closing information from 28th Febru-

ary until 2nd March for options with maturity up to January 2019. In particular, we

collected the maturity of the options, the strike value, the closing bid and ask price

of the given day, the daily price change, the volume and the open interest. Since at

different stock markets all strike values are not present we chose to use the compos-

ite values. Moreover, due to the fluctuating nature of the prices on which the last

trade for a certain strike has happened, we chose to take as fair market value the

mean of the bid and ask prices. In this way the option price should monotonously

change with the strike, although we have observed some exceptions. Finally, for

some stocks the call options which are deeply out of the money, there is no bid

price, while the ask is very small. We do not take into consideration such cases

cThe options data given at the Nasdaq’s website correspond to the current values but not historical
ones. This means that in order to obtain data for different days one has to visit the website on
every such day.
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where the bid value is zero. In the calculations, as a time unit we consider a year

consisting of 252 working days. This results in a dataset which covers options whose

maturity spans from one day up to 224 days.

6. Numerical results

The cornerstone of any option valuation framework is the appropriate model for the

price dynamics of the underlying financial asset. When one makes a choice for the

distributions of the log returns, she is concerned with two slightly confronting de-

mands. First, the chosen probability function needs to match the observed features

of the stock price movements. Second, it should be simple enough and allow for an-

alytical treatment for different time scales. The elementary distribution which we

decided to use, has been shown to fit to the historical returns rather well. However,

for obtaining the distributions for different horizons we must rely on numerical

calculations involving (inverse) Fourier transforms, which deliver samples of the

distributions instead of closed form formulas.

In order to have as good as possible sampling we have applied the most dense

one we could obtain. Concretely, the numerical calculations were performed on a

personal computer and the maximal number of samples from a distribution we

could affordd was Ns = 218. Moreover, when one works with functions which have

Fourier transform with infinite support, the distorting phenomenon of aliasing ap-

pears. When this phenomenon is not significantly pronounced, the samples of the

distribution are perturbed only by a small amount, i.e. the samples obtained from

this approach differ only slightly from those of the real distribution. As our focus

is put only in the region (−Mγ,Mγ) we need samples of the distribution which

are equally spaced in that region. After determination of the sample distance as

d = 2Mγ/Ns, one obtains the highest frequency in the Fourier transform of the de-

manded distribution fmax = 1/2d = Ns/4Mγ. We note that the Fourier spectrum

of the distribution of any considered horizon is known in a closed form, because

it is simply a power of the Fourier transform of the Student’s t-distribution and

its samples are thus easily obtained. Once one has the samples of the probability

distribution, the option prices are calculated by numerical estimation of the integral

(2.7) for which we have applied the trapezoidal rule.

Our model is solely parameterized by the approximation of the standard devia-

tion γ of the probability distribution of log returns. In one approach, this parameter

can be estimated from past observations and thus the well known historical volatility

can be obtained. In another, it can be inferred from the options on the market as the

value which reproduces the market prices best. Here, we have opted for the second

scenario, thus taking the ‘implied volatility’ as the measure of standard deviation.

More precisely, we do not take the parameter that matches the exact value of the

at-the-money option as is usually done. Instead, we choose the optimal parameter

dThe Fast Fourier Transform works most efficiently for sequences with length of powers of 2.
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to be the one which produces the smallest mean squared error of the differences of

logarithms of the theoretical and market option prices for all strikes with certain

expiry date for single option. Formally, the mean squared error as a function of γ is

ε (γ) =
1

NK

∑

K

[log (CT (K, γ))− log (Cmarket(K))]
2
, (6.1)

where Cmarket(K) is the market price of the call on the stock with the same strike

K and expiration date and NK is the number of different strikes for that stock and

that maturity.

This logarithmic error approximately corresponds to the average relative er-

ror between theoretical and market prices. The average absolute error in prices is

not appropriate here because the out-of-the money options are much cheaper than

their in-the money counterparts, and thus the differences are unevenly weighted.

We have also determined the optimal parameters for the other two formulas as well.

These implied parameters were generated by fitting the market values of the op-

tions which have nearest expiry date. The optimal values for all companies which

we have studied are provided in Table 3. As pointed out previously, γ for the Stu-

dent’s t-distribution has similar value to the volatility of the Black-Scholes-Merton

model since both represent standard deviations. However, they are slightly different

because they are fit for the whole spectrum of strikes. Note that the parameter for

the Borland model is significantly grater since it corresponds to yearly standard

deviation, instead of daily which is the unit for the other two formulas.

After the optimal parameters were estimated, the prices for the options with

longer maturities were calculated. Again, as an estimate of the accuracy of the

pricing algorithm, we used the average difference of the logarithms of the theoret-

ical and market option prices. The average errors between the three models and

the market values are summarized in Tables 4, 5, and 6. Each table corresponds

to observations taken from different trading days and for options expiring on dif-

ferent dates. It can be noticed that our model is not able to produce a value for

the options with longest maturities. We argue that it is due to the numerical cal-

culations of the Fourier transform, and its resolution is an ongoing research As is

shown in Bouchaud & Potters (2003), the convolutions of Student’s t-distribution

with three degrees of freedom converge towards the Gaussian with rate
√
N logN .

Namely, the regions of validity of the Gaussian and heavy tails meet approximately

at
√
N logNγ, where γ is the parameter of the Student’s t-distribution. For the

longest period considered here, N = 224, it means that such intersection point is

located at approximately 35 standard deviations γ from the origin. So, one could

use the Gaussian distribution for pricing options with such long period. However,

the decision at which period N one could switch from convolutions of the Student’s

t-distribution to Gaussian, should be examined with a more detailed theoretical

analysis. In addition, a comparison of the predictive power of such approach with

market option prices with periods within that region is needed as well. Finally one

can note that for the other periods, it is evident that for almost all of the con-
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Table 3. Implied distribution parameters by minimizing the mean squared error of log prices of

the theoretical option values from the market values.

Company γ σBor σBSM

28th February

AAPL 0.012 0.279 0.017

AMGN 0.016 0.374 0.020

AMZN 0.012 0.290 0.016

GOOGL 0.014 0.338 0.016

MSFT 0.013 0.305 0.013

PEP 0.010 0.223 0.011

TSLA 0.020 0.475 0.040

VOD 0.014 0.337 0.012

1st March

AAPL 0.015 0.405 0.025

AMGN 0.019 0.502 0.027

AMZN 0.014 0.373 0.022

GOOGL 0.017 0.463 0.021

MSFT 0.016 0.418 0.018

PEP 0.014 0.358 0.013

TSLA 0.021 0.592 0.051

VOD 0.018 0.471 0.014

2nd March

AAPL 0.011 0.214 0.027

AMGN 0.028 0.628 0.028

AMZN 0.013 0.260 0.015

GOOGL 0.013 0.271 0.015

MSFT 0.012 0.249 0.012

PEP 0.012 0.243 0.012

TSLA 0.019 0.382 0.024

VOD 0.012 0.279 0.011

sidered companies our model performs better than the BSM and Borland models,

sometimes resulting in an error that is one order of magnitude smaller.

In order to describe the intuition behind these results, in Figure 4 we illustrate

the logarithms of the call option prices of two companies obtained by our approach,

together with the Borland and Black-Scholes-Merton models as a function of the

market values which were collected from the Nasdaq web page. The left panel shows

a typical case where this approach outperforms the other benchmark models in

fitting of the market values. Its predictive power is mainly due to the fact that it

traces the curve even in the out-of-the money part of the strike spectrum. When this

part is rather wide which means that there are strikes which are much higher than
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Table 4. Mean squared error of the log option prices for data from 28th February

Days until maturity

Company Model 2 7 12 17 21 26 36 224

AAPL

Our 0.022 0.044 0.031 0.048 0.034 0.043 0.080 –

Borland 0.033 0.092 0.085 0.164 0.108 0.135 0.287 0.209

BSM 0.071 0.047 0.052 0.102 0.121 0.160 0.091 0.086

AMZN

Our 0.065 0.104 0.074 0.132 0.172 0.265 0.261 –

Borland 0.082 0.108 0.263 0.065 0.132 0.063 0.155 0.003

BSM 0.026 0.013 2.709 0.019 0.269 0.036 0.118 0.046

AMGN

Our 0.005 0.430 0.012 0.017 0.006 0.040 0.020 –

Borland 0.003 0.122 0.214 0.415 0.313 0.682 0.584 0.607

BSM 0.072 0.179 0.062 0.224 0.204 0.354 0.114 0.374

GOOGL

Our 0.022 0.021 0.009 0.013 0.007 0.012 0.003 –

Borland 0.030 0.210 0.153 0.187 0.267 0.335 0.119 0.460

BSM 0.026 0.025 0.021 0.065 0.037 0.052 0.019 0.022

MSFT

Our 0.020 0.021 0.026 0.007 0.010 0.005 0.035 –

Borland 0.021 0.060 0.349 0.187 0.219 0.148 0.443 0.330

BSM 0.020 0.020 0.066 0.009 0.007 0.002 0.011 0.010

PEP

Our 0.025 0.010 0.065 0.233 0.017 0.029 0.151 –

Borland 0.017 0.051 0.200 0.256 0.251 0.322 0.361 0.930

BSM 0.105 0.059 0.383 8.151 0.055 0.057 0.269 0.041

TSLA

Our 0.035 0.034 0.016 0.025 0.021 0.047 0.025 –

Borland 0.039 0.264 0.274 0.276 0.317 0.213 0.729 0.033

BSM 0.349 1.370 0.916 1.095 1.183 0.960 1.656 0.776

VOD

Our 0.061 0.044 0.050 0.038 0.021 0.044 0.038 –

Borland 0.060 0.063 0.199 0.199 0.139 0.268 0.341 1.021

BSM 0.063 0.043 0.011 0.012 0.006 0.013 0.003 0.121

Note: Bold denotes lowest error among the three considered formulas.

the stock’s spot price the other models generally show much weaker performance.

When out-of-the money options are not interesting to the market participants, so

mainly options which are nearly at the money are traded, the other models can

sometimes provide better prediction of the market option prices. One can see one

such case in the right panel of Figure 4. Another feature that can be observed from

the numerical calculations is that the Borland model generally overprices, while

the Black-Scholes-Merton formula underprices the out-of-the money options. The

weakest side of our approach is the deviation from the market values of the options

that are nearly at-the money. From the Figure 4 it is apparent that the three

models produce rather good prediction of the prices of the deeply in-the money

options while the deviations are mainly in the other part of the strike spectrum.

Such similarity is due to the fact that lion share of price comes from the part of the
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Table 5. Mean squared error of the log option prices for data from 1st March

Days until maturity

Company Model 1 6 11 16 20 25 35 223

AAPL

Our 0.019 0.063 0.059 0.013 0.006 0.014 0.013 –

Borland 0.016 0.605 0.505 0.666 0.521 1.119 0.874 0.534

BSM 0.194 0.737 0.653 0.822 0.698 1.256 0.722 0.605

AMZN

Our 0.059 0.098 0.060 0.120 0.121 0.178 0.183 –

Borland 0.056 0.268 0.397 0.165 0.353 0.275 0.461 0.015

BSM 0.189 0.264 0.568 0.126 0.186 0.167 0.135 0.006

AMGN

Our 0.021 0.451 0.014 0.027 0.059 0.068 0.085 –

Borland 0.022 0.080 0.416 0.495 0.658 0.797 0.932 0.598

BSM 0.174 0.068 0.419 0.528 0.672 0.800 0.621 0.704

GOOGL

Our 0.038 0.087 0.042 0.030 0.022 0.039 0.020 –

Borland 0.035 0.453 0.519 0.604 0.506 0.815 0.563 0.750

BSM 0.056 0.239 0.392 0.269 0.214 0.369 0.164 0.352

MSFT

Our 0.025 0.036 0.096 0.052 0.036 0.037 0.117 –

Borland 0.024 0.248 0.767 0.517 0.536 0.559 0.932 0.576

BSM 0.021 0.106 0.206 0.203 0.182 0.187 0.214 0.137

PEP

Our 0.001 0.021 0.041 0.111 0.091 0.129 0.054 –

Borland 0.001 0.205 0.549 0.874 1.083 0.980 1.407 1.824

BSM 0.004 0.019 0.075 6.259 0.082 0.089 1.259 0.172

TSLA

Our 0.111 0.054 0.038 0.025 0.027 0.043 0.022 –

Borland 0.125 0.529 0.730 0.645 0.709 0.681 1.279 0.035

BSM 1.709 2.436 2.255 2.160 2.282 2.245 3.072 1.607

VOD

Our 0.021 0.043 0.098 0.133 0.146 0.242 0.240 –

Borland 0.021 0.102 0.301 0.392 0.455 0.741 0.820 0.640

BSM 0.021 0.016 0.019 0.039 0.038 0.067 0.063 0.134

Note: Bold denotes lowest error among the three considered formulas.

integral where the body of the distribution lies, which means that the tails do not

contribute significantly. To ease understanding of this, we have provided in figure 6

the integral from the lower bound logK/S0−µ(T−t) up to variable upper bound x,

as function of the upper bound x. Clearly, only few standard deviations γ away from

the peak of the probability distribution are needed to obtain a good approximation

of the price of any deeply in-the money call option.

When considering the deeply out-of-the money options, one should notice that

they will be worthless at maturity unless huge growth of the underlying happens.

It means that their values are determined from the integral (2.7) where only one

tail of the distribution contributes. Since exponential tail has much faster decay

as compared to the power law peers, the discrepancy between the Black-Scholes-

Merton formula and the other two could be understood easily.
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Table 6. Mean squared error of the log option prices for data from 2nd March

Days until maturity

Company Model 5 10 15 19 24 35 222

AAPL

Our 0.018 0.006 0.015 0.021 0.061 0.033 –

Borland 0.056 0.037 0.066 0.074 0.133 0.128 0.051

BSM 1.587 0.782 1.456 1.560 2.457 1.293 1.090

AMZN

Our 0.048 0.044 0.048 0.073 0.100 0.108 –

Borland 0.114 0.116 0.105 0.158 0.115 0.128 0.012

BSM 0.041 0.107 0.546 0.301 0.920 0.714 0.904

AMGN

Our 0.038 0.095 0.500 0.267 0.865 0.738 –

Borland 0.038 0.160 0.679 0.412 1.225 1.208 0.567

BSM 0.022 2.577 0.021 1.490 0.027 0.172 0.005

GOOGL

Our 0.028 0.019 0.007 0.005 0.004 0.004 –

Borland 0.080 0.094 0.048 0.124 0.123 0.054 0.242

BSM 0.043 1.049 0.042 0.034 0.074 0.030 0.103

MSFT

Our 0.046 0.011 0.017 0.009 0.006 0.003 –

Borland 0.064 0.079 0.037 0.160 0.109 0.301 0.143

BSM 0.034 0.142 0.042 0.033 0.010 0.079 0.034

PEP

Our 0.010 0.029 0.144 0.073 0.056 0.029 –

Borland 0.003 0.072 0.169 0.271 0.239 0.623 1.013

BSM 0.055 0.138 6.029 0.232 0.143 0.230 0.684

TSLA

Our 0.040 0.020 0.026 0.025 0.049 0.019 –

Borland 0.098 0.123 0.15 0.194 0.126 0.471 0.006

BSM 0.057 0.406 0.055 0.069 0.042 0.089 0.074

VOD

Our 0.014 0.012 0.009 0.017 0.013 0.022 –

Borland 0.016 0.021 0.026 0.044 0.132 0.190 0.622

BSM 0.014 0.012 0.015 0.014 0.005 0.011 0.304

Note: Bold denotes lowest error among the three considered formulas.

The relevance of an option pricing model is usually determined by verifying its

potential to predict the implied volatilities for different strikes. It is assumed to

be acceptable if it can generate the volatility curves obtained by determining the

volatilities in the Black-Scholes-Merton model that produce the observed market

prices. We have not used the implied volatility test in this work because in the data

we have studied, for all stocks and nearly for all expiration dates the average of bid

and ask market values for some strikes were below the lowest possible option price

values. This means that there is no volatility which can result in such fair option

price. In fact, such market option prices are below the smallest possible theoretical

value which is obtained for zero volatility. This is result of very small bid values

that actually represent an arbitrage – one can immediately exercise the option and

make a profit. Regardless of that, we show in figure 6 the implied volatilities for the
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Fig. 4. Option prices of the proposed algorithm compared to the Borland formula and Black-
Scholes-Merton formula with the respective market values. On the left panel are the results for
options prices of Tesla on 1st March 2018, and expiring at 16th March 2018. On the right panel
are the corresponding prices for Amazon on 28th February 2018 and expiring on 23rd March 2018.
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Fig. 5. Integral sum of the integrals used for calculation of the call option price by using the
proposed framework (in red) and the Black-Scholes-Merton approach (in cyan). The unit of the
horizontal axis is the distribution parameter γ = σ.
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Fig. 6. Implied volatility curves for our model and that of Borland with those of the market prices.
The results shown correspond to the call options of Apple observed at 1 March 2018, which expire
three weeks later, at 23 March.

AAPL for options expiring in approximately three weeks. One can notice that the

theoretical model of Borland as well as ours produce volatility curves resembling the

market one. While the former seems to approach closer to the market determined

values for in-the money options, our approach performs better at the out-of-the

money section. Also, there are apparently values where the implied volatility for

the market price is missing, which are those for which the bid price of the option

was below the smallest possible one.

7. Conclusions

The options pricing scheme proposed in this work relies on the assumption that

the future will statistically follow past observations, or that the distribution of log

returns is stationary. The truncated Student’s t-distribution which appears as a

building block of the chain of distributions with different horizons was introduced

because it mimics the observed historical returns well, especially at the tails. Options

are instruments for which the fairness should be a result of expectation of the

future. Without any other insight in the future one could rely on the belief that it

will be likely the past and thus use this or some similar probability distribution in
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calculating the expectations.

The Student’s t-distribution and its truncated version besides providing good fit

to the observed log returns, were applied in addition due to their simplicity. Sums

of variables drawn from such functions do not have closed form of distributions,

but have ones for their characteristic functions. It was furthermore obtained that

convolutions of such distributions results in models of log returns for different time

intervals which are approximately in accordance with the no-arbitrage principle and

also support the Put-Call parity relationship. At the end, besides the relative theo-

retical plausibility, the proposed pricing framework has shown very good accuracy

in fitting to the market values of the American options of several companies from

different sectors.

Our motivation was to make a good basis for a pricing framework instead of

aiming to design a ready to use pricing formula. Nevertheless, it appeared that the

formula produces prices that fit the real data with good accuracy with only one

parameter. We should emphasize, however, that the observations by Plerou et al.

(1999) and Amaral et al. (2000) of the historical returns have in fact suggested

that the distribution is not symmetrical, and moreover the tails of the probability

densities of different companies do not fall off exactly as inverse of fourth degree

polynomial. This means that one could try to apply a more general Tsallis distri-

bution with appropriate parameter for each company, or even different parameters

for the positive and negative returns. The practitioners of theoretical pricing of

options might directly apply the proposed procedure, modify it with appropriate

tail indices, or even use empirical distributions obtained by their own method and

plug them into the pricing framework. The whole procedure in this case would be

numerical by using the FFT and its inverse for determination of the distributions of

returns for different horizons. The problems we expect to emerge in this case would

be related to the implementation of the algorithms for calculation of the Fourier

transforms.

A continuous random process for price returns offers distributions of returns

for any horizon. This is one of the features which makes the Wiener process which

has Gaussian distribution of returns very plausible one. Even though in Borland

(2002b) the Student’s t-distribution has appeared as a result of a stochastic process

with statistical feedback, the related option pricing formula does not coincide with

the one presented here. Thus, it remains an open problem whether one could define

another stochastic price dynamics process where the probability distributions of log

returns would be Student’s t-distribution or any truncated version of it.

As a final remark, we point out that the pricing framework can be fully exploited

by determining the option prices for periods to maturity which are are measured

to a smaller unit frame than days. In this case one would need to work with very

large number of convolutions in order to price options which are several weeks to

maturity and may run into numerical obstacles. Another approach for overcoming

this problem can be based on finding patterns in change of γ for different time

intervals and practically use the Student’s t-distributions for all horizons. Due to the
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central limit theorem γ would probably grow linearly, as in the Gaussian situation.

In order to pursue this way, one needs a huge amount of historical data in order

to study the dependence of γ on time. Finally, one can apply a combination which

would involve Student’s t-distribution with different scale parameters for intra day

calculations and then make appropriate convolutions for longer periods.
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